

Corby Energy Services, Inc.

About Us

- WBENC Certified since 2012
- Detroit-based business since 2015
- Approx. 450 Employees (mostly Michigan-based)
 - All field employees are QEW-trained (Qualified Electrical Worker)
 - Most field employees are OQ Qualified (Operator Qualification)

Corby Energy Services, Inc.

Michigan Locations

2021 S. Schaefer Hwy., Detroit, MI 48217

45345 Five Mile Rd., Plymouth, MI 48170

6001 Schooner St., Belleville, MI 48111

7929 E. M-36, Whitmore Lake, MI 48169

Current Customers

Multi-year contracts with Michigan utilities:

DTE Energy (Electric/Gas/Streetlighting/Major Enterprise Projects)

 Blanket contracts which include joint service and commercial feeder work with numerous utilities including CMS Energy, AT&T, Comcast, etc.

AT&T

 Copper and fiber underground and aerial placing, repair and maintenance

CMS Energy

Distribution operations – new business and rehabilitation

MDOT

 Directional drilling, lighting, communications and traffic control/signaling services

Various cities and municipalities

- Water and sewer services
- Streetlighting
- Pipeline rehabilitation and inspection (bursting, lining, CIPP, chemical grouting, cctv, etc.)

Service Offerings

CES is an infrastructure solutions provider, specializing in:

Trenchless Utility Construction

- · Horizontal Directional Drilling
- Cured-in-Place-Pipe (CIPP)
- Slip Lining
- Pipe Bursting

Traditional Excavation and Site Work

• Infrastructure Construction/Rehabilitation/Renewal

Design/Build

 Complete EPC capabilities with our affiliated firms (includes engineering, survey, permitting, procurement, warehousing, construction)

Slope Restoration

Pipeline Renewal Methods

Critical Steps to Trenchless Pipe Projects

- Define the problem in the piping system via various methods or procedures
- Select alternatives that are considered appropriate for the repair the pipes (Cost + Quality = Value)
- Determine the method of procurement?

м

Trenchless Technologies

- Pipe bursting
- Cured-in-Place-Pipe
- Fold & Formed / UltraLiner
- Horizontal Directional Drilling
- Grouting / CCTV Inspection / Cleaning
- Engineering / Design Build
- Sliplining
- Large Diameter Pipe Rehabilitation
- Excavation / Open Cut

Pipebursting

Some Trenchless Project Owners

- City of Warren
- City Jacksonville
- City of Livonia
- City of Monroe
- City of Auburn Hills
- City of Grosse Pointe Woods
- City of Center Line
- Chesterfield Township
- City of Fraser
- City of Saint Clair Shores
- City of Traverse City
- City of Ann Arbor
- City of Ypsilanti
- City of Grosse Pointe Farms

Departments of Transportations

- Michigan
- Indiana
- Alabama
- Arkansas
- New York
- Florida

- City of Detroit
- Watertown Township
- City of St. Petersburg
- City of Live Oak
- City of Houston
- City of Austin
- City Jacksonville
- City Fort Oglethorpe
- City of Dallas
- City of Seattle
- City of San Antonio
- City of Atlanta
- City of South Lyon
- City of Lansing
- City of Orlando

Universities

- Michigan State University
- University of Michigan
- University of Notre Dame
- University of Arlington
- Louisiana Tech

Pipebursting: <u>Today vs. Then</u>

- Greater recent advancement providing wider application / project history
- More reliable today than five years ago
- More cost-effective
- Wider acceptance and more usage
- Better Equipment and Materials
- Increased knowledge of successful equipment, means, methods and materials
- Better understanding from the owner and engineering communities of benefits

Advantages to Trenchless Technologies

- 85% less carbon footprint then open-cut
- Pipe Bursting "Green Technology"
- Owner gets compliments instead of complaints from the public
- Cost savings average 30% less than open excavation
- Less public disruption then open-cut
- Utilizing existing conduit in easements
- Less risk to owner & contractor for safety issues.
- Normally change orders don't exist unless more work added
- Reduce project duration

Large Diameter Pipe Bursting Considerations

- Depth
- Existing pipe material
- Ground water
- Existing Soils
- Age of Construction
- Back fill materials
- Shoring and Bracing machine

Pipebursting Upsize Capabilities

- Inspect existing sewer by CCTV
- Excavate machine and new pipe insertion pits
- Excavate service pits if required
- All pits to be properly shored and maintained dry

Static Pipe Bursting Step 2

- Prepare machine pit
- Set up Static pipe bursting machine in pit
- Push rod string through host pipe (existing sewer)

From machine pit to new pipe insertion pit

10

Static Pipe Bursting Step 3

- The rod string emerges at new pipe insertion pit
- Attach pipe bursting head and new replacement pipe to
- The rod string
- In this case HDPE pipe already fused into a single
- Continuous length is shown and the set up is ready for

The actual pull back replacement process

Static Pipe Bursting Step 4

- Static pipe bursting machine in machine pit is
- Set up for pull back operation
- The rod string pulls the bursting head towards the
- Machine pit
- The bursting head breaks the existing sewer and
- Pushes the broken pieces into the surrounding
- Ground, away from the center and creating a new
- Tunnel
- The bursting head advances towards the machine pit
- And installs the new HDPE pipe in-place

Pipe Bursting Case Study

University of Notre Dame

- Bursting 7,000 ft of 12" VCP existing VCP upsizing to 18" HDPE SDR 17.
- Depth 25' to 35'
- 1,200' pulls thru existing manholes
- 225-Ton Static Pipe Burst Machine

By-pass

Female Dorm

Support of Main Electric Conduit

Set-up of Pipe-Burst Machine

Pipe Fused Across Campus

Entry Pit

Supporting Pipe at Entry Pit

Supporting Pipe at Entry Pit

Entry Existing 12" VCP OD

22" Expander

Pushing Down on Pipe to Maintain

Grade

Bursting Machine Inside 12'X12' Manhole Box

Pipe Exit

Entry pit

Burst Machine Removed Burst-Head Removed

Manhole Set to Connect Two Pipe-Burst Installations

Removing Invert to Burst Through Existing Manhole

Pipe-Rammed Under Discovered Fiber-Optic Vault

Pipe Through Rammed Casing

Burst Entering Through Existing Manhole - 1,000' pull.

Ready to Begin Burst

Pipe Train

Pipe Bursting Case Study

- Pipe Bursting existing 3 layer 30" brick sewer upsizing to 36" HDPE SDR 17.
- Depth 20' to 25' in deep
- ■800' pulls thru existing manholes
- 225-Ton Static Pipe Burst Machine

Burst Machine Pit

Burst Head Entering Existing 30" RCP

Entering Existing Pipe

Bursting Through Manhole in Road

Entering Exit Pit

Burst complete

Fort Oglethorpe, Georgia

Design Build

- Pipe Burst and CIPP 9,000 LF of 24" RCP Sanitary Sewer
- CCTV/Cleaning
- Static Burst System

May 10, 2022

Pipe-Burst Equipment

Pipe-Burst Head

HDPE Pipe Entry Pit

HDPE Pipe Entry Pit

Pipe Bursting-Case Study

MDOT Project on I-94 East bound lanes, at Sprinkle Road Exit.

- There was a collapse in the center of the east bound lanes.
- Existing pipe was 16" RCP. Stayed with same size HDPE as end product.
- Burst was completed in one night never closing I-94.
- Using static burst system.
- 225 Ton Static Pull

Sink Hole in Fast Lane

Sink Hole

Burst Machine Set

70 May 10, 2022

Maintained Traffic Flow

1

Fused HDPE on Shoulder

Burst Head

Entry Pit

Bursting Through Existing Catch Basin

75

Pipe-Burst Head Reaching

Machine 1

Pipe-Burst Case Study

Michigan Department of Transportation Project on M-13

- Failing 30" Reinforced Concrete Pipe Burst 30" HDPE
- Bay City, Michigan

Setting-Up

78 May 10, 2022

Inside Existing 30" RCP

Driving I-Beams

During Pipe-Burst Pull Back

Above Pipe

Burst Head Enters Burst Pit

Pipe Bursting-Case Study

42" Culvert Metal Pipe

- **■** Wolverine, Michigan
- Existing 42" CMP 35' in depth
- TRS-225 Ton pipe bursting machine

Outfall Pipe – Tar Lined CMP

Burst Machine Set Back to Allow

Pipe to Enter Pit

Case Study 48 in. CMP Pipe Burst

 Emergency 48 inch Collapse under Michigan Department of Transportation Highway M-106

Sink hole on upstream side

Pipe Collapse in shoulder

Upstream end

Down stream end of pipe

Pull head fused on

Notice gas pipeline marker for 12 high pressure steel

Pipe installed exit side

Machine side pipe installed

Completed

sliplining

- 4" thru 120" diameters
- Continuous or segmental

With flow or by-passed

- HDPE Pipe
- Bulk Head
- Grout annulus

Slip-Line Case Study

Tanner Creek 84" Culvert

- 520' Slip-line with 72" HDPE
- 60' under 1-94 mile marker 16

BERRIEN COUNTY DRAIN COMMISSION Michigan Department of Transportation

Existing Outfall

Downstream End 84" CMP Bottom Rotted Out

May 10, 2022 **131**

Up-stream – Bend in Pipe

May 10, 2022 132

I-94 60' Above

Adding Sections of Pipe By-Pass Run Through Pipe

Adding 50' Section of Pipe

Aligning Pipe for Welding

Extrusion Welding Pipes Together

Pipe Installed - Grout Tubes

Bulk Head Complete and Grouted Rip-Rap Installed

Complete

Slip-Line Case Study

42"" Culvert

- 485' Slip-line
- 30' under US-127 and M-10
 Michigan Department of Transportation

May 10, 2022

Sliplining Existing 42" Culvert

Pipe laid out

Slip-Line Case Study

66" Culvert

- 360' Slip-line
- 70' under I-196

 Michigan Department of Transportation

May 10, 2022

Case History 1

Existing Structure:

140' - 7'-8"x 5'-5" MULTI-PLATE Pipe-Arch, 10 gage

Reline

- 73"x55", Aluminum, 10 gage, Ultra Flo
- Mannings "n"=0.012
- Service Design Life 100 years plus
- Supplied with 3 stage grout ports, skid rails, leveling rods, internal 10-C bands and flat gaskets, zinc chromate primer exterior.
- Match marked sections

Pulling block

Internal bands w/ flat gasket

Day 2

Bypass piping

Day 3

Flotation bracing

Day 4

Bracing to through 12 o'clock grout port

Vent through Bulkhead

Grout

Grout Port

Day 8 –Last grout lift. Grouting procedure complete.

Grout through vent

Outlet

and road failure, all work can be completed with little or no road closure

Joint Seals

Flat Bottom Arch Invert Repairs Barry County Road Commission

CIPP

Cured-in-Place-Pipe

- 30-year plus history of the product
 - Most extensively used trenchless product
- 4" thru 108" diameter
- Gravity/Pressure applications
 - ☐ Mainlines and laterals
 - Manholes
- Predominately used within sewers
 - □ Industrial applications
- Independently verified

CIPP can be utilized for various pipeline concerns:

- Structural
- Environmental
- Strength Enhancement (New construction)
- Infiltration
- Pressure / Gravity Applications
- Lateral Connections
- Point Repairs

CIPP Can Respond quickly!

- Local Installers
- Local Wet out Operations
- In stock materials for standard sizes
- Water / Air Installations
- Most Tube Manufacturing is performed off site in Factory.

CCTV

Inversion Process

- Water / Air
- Water is most reliable
- Air can offer increased efficiencies

Tube Inversion

Requirements for a Successful Project

- Having appropriate Polymer for Highway work.
- Gather Soils Reports, Construction Drawings, and Visit Site to compile information to create a repair plan.
- Have Experienced Technicians with Robust DCP unit to test subgrade soils to minus 30 feet, so they can adjust injection plan when on site if necessary.

Number
of blows
asphalt
pavement
pavement
pavement
21
18
15
3
4
3
2
1
2
1
5 3 4 3 2 1 2 1 0 2 1 3 4
2
1
3
4

Depth	Number
ft - in	of blows
7' - 0"	2
7' - 0" 7' - 4" 7' - 8"	2
7' - 8"	wor
8' - 0"	wor
8' - 4"	wor
8' - 8"	wor
9' - 0" 9' - 4"	wor
9' - 4"	wor
9' - 8"	7
10' - 0" 10' - 4"	3
10' - 4"	3
10' - 8"	3
10' - 8" 11' - 0"	5
11' - 4"	4
11' - 8"	2
12' - 0"	2
12' - 4"	1
11' - 4' 11' - 8" 12' - 0" 12' - 4" 12' - 8" 13' - 0"	7 3 3 3 5 4 2 2 1 2 2 2
13' - 0"	2
13' - 4"	2

Depth	Number
ft - in	of blows
13' - 8"	3
14' - 0"	3
14' - 4"	6
14' - 8"	3 3 6 8
15' - 0"	8
15' - 4"	6 7 7 7
15' - 8"	7
16' - 0"	7
16' - 4"	7
16' - 8"	8
17' - 0"	9
17' - 4"	10
17' - 8"	10
18' - 0"	10
18' - 4"	10
18' - 8"	10
19' - 0"	10
19' - 4"	10
19' - 8"	7
20' - 0"	11

POLYURETHANE MATERIAL

- > Low viscosity
- ➤ 2-component: Resin & Hardener (1:1 by volume)
- > Formulated to resist water intrusion into the reaction
- ➤ Exothermic chemical reaction generates CO2 gas
- ➤ CO2 gas causes expansion of the polymer and creates pressure on the surrounding environment

POLYURETHANE MATERIAL

- Rapid Cure
 - ✓ Reaction complete in < 1 minute
 </p>
 - ✓ Can support traffic after 20 minutes
 - ✓ Full strength in 24 hours
- Rigid Structural Polyurethane created as the material cures
- Installed density range 4 to 10 lbs / CF
- Strength varies with density

Injection inside steel reinforced, plexi-glass box so material flow could be observed

Stabilized soil mass was free-standing after box removed

Vertical load applied using an excavator

Soil mass would not crush, but excavator was lifted 11 inches

Bridgman - Culvert

4. Culvert apron 7' X 22' - two injection to 5' depth

Calculation: Deep Injection - apron

100# per injection X \$10.00 X 2 = \$2000.00

Cummon

<u> Bridgman – Culvert Base</u>

