TIMBER?!?

Mother Nature's Material for Bridges

Existing Crossing

- ♦ Timber Structure
 - ♦ 12" Spike Lam Deck Panels
 - ♦ Timber Piles
- ♦ Built 1966
- Poor Condition
 - ♦ Several broken deck boards
 - ♦ Deck panels pulling apart
 - Broken spreader beams
 - ♦ Decaying piles
 - Large deflection with truck traffic
- ♦ 75-Foot Bridge (3 Spans)
- ♦ County Primary Road
- Low Traffic Volume
- ♦ High Commercial %

So Many Choices

- ♦ Lots to consider
 - ♦ Cost
 - ♦ Longevity
 - ♦ Maintenance
 - ♦ Time to Construct
 - ♦ Aesthetics
 - ♦ Materials

Alternatives Considered

- ♦ Steel I-Beam
- ♦ Pre-Stressed Concrete I-Beam
- ♦ Concrete Box Beam
- Many More!

Timber Pros & Cons

Pros

- ♦ Completely Prefabricated
- ♦ Cheaper
- ♦ Faster Construction
- ♦ Lighter Weight Pieces
- ♦ Thin Profile
 - ♦ Hydraulic must
 - ♦ Less approach work
- ♦ Less Concrete

Cons

- ♦ Shorter Service Life
- ♦ Span Length Limited

New Bridge

- Same Style
- ♦ Timber Superstructure (18" Spike Lam Deck Panels)
- More Spreader Beams
- ♦ Steel Piling, CIP (14" Diameter)
 - ♦ No Bedrock/Sandy Soils
- ♦ 90 Feet Long (3 Spans)
- ♦ 28 Foot Clear Width vs 20 Foot on the Old Bridge
- ♦ Total Cost = \$1.31 Million

Why Did We Choose Timber

Cost Effective

- ♦ Limited Funds (programmed originally as rehab)
- ♦ Steel I-Beam or Concrete I-Beam estimated to be 30 40% higher

♦ Faster Construction

- ♦ No wait time for concrete curing
- Prefabricated, set and fasten together

Less Concrete

♦ Remote work site, nearest plant over 60 miles away

Questions?

Contact Info

Ian Stampfly, PE – Project Engineer

County Highway Engineer – Schoolcraft CRC

engineer@schoolcraftroads.org, 906-341-5634

Gust Junttila, PE – Design Engineer
Project Manager – UP Engineers & Architects
gjunttila@upea.com, 906-779-0937

Jake Silkey – Sales Engineer
Wheeler Bridge
jsilkey@wheeler1892.com, 262-229-4068

