MICHIGAN COUNTY ENGINEER'S WORKSHOP

The Role of 811, Private Utility Locating and Mapping, and Subsurface Utility Engineering in your Projects.

BPRS

IN PURSUIT OF 100% SUBSURFACE DALAGE PREVENTION

- **Utility Strike Statistics** \bullet
- Public & Private Utilities \bullet
- Locating Timeline \bullet
- Miss Dig Overview
- Private Utility Locating Overview \bullet
- Subsurface Utility Engineering Overview
- Best Practices

AGENDA & PURPOSE

UTILITY STRIKE STATISTICS

- On average, it is estimated a utility line is damaged every **90 seconds** in the United States
- CGA came out with a 20-year study that showed utility strikes have resulted in **1906 injuries and 421 deaths**
- Estimated 65% of underground utilities in the United States are **privately owned**.

Over 20 million miles of active underground utilities throughout the United States

CGA Common Ground Alliance

For the last 20 years, annual reports are published by the CGA analyzing utility strike damages, near miss events, root causes, and makes recommendations back to the industry where safety can be improved.

2022 resulted in 213,792 damadges reported in the US ullet

• The hundreds of thousands of individual damages that occur across the country each year cost communities approximately \$30 billion annually

To download or to access additional analysis, please visit dirt.commongroundalliance.com. Vol. 19 Released September 2023. This report may be referenced as the DIRT Annual Report for 2022. © 2023 Common Ground A

Top Four Utilities Damaged

- **Telecommunication Lines** 1)
- 2) Natural Gas Lines
- 3) Electric
- 4) Cable TV Lines

Top Three Root Cause Groups

- Insufficient Locating Practices 1)
- 2) Excavation Practices
- 3) Notification was **NOT** made

18K

7,596 reported damages in 2022

Top Four Utilities Damaged

- 1) Natural Gas Lines
- 2) Telecommunication Lines
- 3) Cable TV
- 4) Electric

Top Three Root Causes

- 1) Insufficient Locating Practices
- 2) Excavation Practices
- 3) Notification was **NOT** made

AS-INTENDED

AS-BUILT

PROJECT PHASES

PUBLIC UTILITIES

PRIVATE UTILITIES

PUBLIC & PRIVATE UTILITIES

811 SERVICES ONLY LOCATES AND MARKS OUT PUBLIC UTILITES, THEY DO NOT **MARK OUT PRIVATELY OWNED UTILITIES**

- A public utility line is owned and maintained by a utility company
- A private utility line is owned and maintained by the property owner themselves * Electric lines, site lighting, communication lines, fire suppression system....

- "I notified 811, won't they mark out all the utilities on my jobsite"
- "Well, that's why we hired you and that is why you're out here..."

CALL 811 – IT'S THE LAW!

COMMON LOCATING TECHNOLOGIES

ELECTROMAGNETIC (EM) LOCATOR

- Used for tracing known metallic utility lines
- Consist of a transmitter, receiver and detects utilities via induction, conduction, and passive modes with known utilities
- Detects live power and RF signals underground
- Poor Conductors dependent on the ability of facilities or tracer wires to conduct a current
- Interfering Sources Common sources of interference are overhead power lines
- Congested areas, signal bleeding off to nearby utilities

- GPR works by sending electro magnetic pulses from an antenna into a particular medium to image the subsurface
- When the radar pulse contacts something other than the material, it generates a reflection back to the antenna.
- This reflection is displayed in real time for the operator to mark the item at the surface and item depth is noted

GROUND PENETRATING RADAR

- Both metallic & non-metallic materials
- GPR has a typical depth penetration of 3'-8' deep throughout Michigan (4'-5' on average)
- Typically, a target (utility) must be at least 1" in diameter per 1' of depth in order for it to be located with GPR technologies.
- Clay soils, wet soil, or soil which contains high amounts of debris can limit the effectiveness of GPR.
- Surface conditions such as brush, standing water, metal plating, or anything which blocks direct access to the area to be scanned will limit the ability to perform GPR

GROUND PENETRATING RADAR

VIDEO PIPE INSPECTION: MAPPING & MODELING

V	Wi	nCa	an				V	vinc	a	Inspection report				
							ate	Work Orde	r	Weather Superved By:	Certificate N	umber	Dine Sea	
					Project Date 10/5/2020	10/6	2020	Work Orde	a.	Kyle Humphreys	U-419-0703	05346	ripe bey	- Contraction
ipe Segmen				Upstream MH	MH 2	Yea	r laid;	No Pre-Clean	g: ning	Direction: Pipe Joint Length: Downstream	Total Len 508.5	gth:	Length S	Surve 8.5 *
eference						Chr.			_	Drainane Area:	Linstream MH		H 2	
ity				Downstream MH	MH 2.1	Street:				Media Label:	Up Rim to Inve	ert: 0	.0	
intal Length				Snape	Circular Tuinch Polygingi Chloride	Location C	ode			Flow Control:	Downstream M	IH: N	H 2.1	
and conget	Distance	PACP Code	Observation		. aj miji amanac	Location D	letai			Sheet Number.	Down Rim to I	nvert: 0	.0	
		AUH	Machole			Pipe shap	e: C	ircular		Sewer Use: Sanitary Sewage Pipe	Total gallons u	ised: 0	.0	
	0.0	AMICI MOM	Water Level 5% of the unsti	and dimension		Pipe size:	1	ohorimd Chlorida		Sewer Category: SEC	Joints passed	0		
+	63.8	MIVYL.	Water Level, 5% of the very	tical dimension		Liping Met	hod:	olyvinyi Chionde		Owner	Joints failed.	0		
	109.4	TF	Tap Factory Made at 10 o'cl	ock, dia/height: 2inch		Additional	Info:							_
	110.6	MWL	Water Level, 5% of the verti	cal dimension										_
	152.8	VC	Vermin Cockroach	n konstanti		1	:1762	Distance	Code	Observation		Counter	Photo	
	159.4	TF	Tap Factory Made at 10 o'cl	ock, dia/height: 2inch										
	173.9	HSV	Hole Soil Visible at 12 o'cloc	×				0.0	AMH	Manhole / MH 2		00:00:00		
	177.1	TF	Tap Factory Made at 12 o'cl	ock, dia/height: 2inch			H2	_						
	204.7	TF	Tap Factory Made at 9 o'clo	ck, dia/height: 2inch			X	0.0	MWL	Water Level, 5% of the vertical dimension		00:00:01		
	204.7	DAZ	Deposits Attached Other, 59	% of cross sectional area	from 5 o'clock to 7 o'clock, Start									
	204.7	MGO	Deposits Attached Other, 57 Miscellaneous General Obs	 of cross sectional area 	at 5 o'clock, Start	100		63.8	MWL	Water Level, 15% of the vertical dimension		00:05:00		
	227.8	DSZ	Deposits Settled Other, 15%	of cross sectional area	from 6 o'clock to 7 o'clock									
	229.7	ISSRH	Intruding Sealing Material Sealing	ng Ring Hanging, 5% of cross	sectional area from 12 o'dock to 1 o'dock		/	109.4	TF	Tap Factory Made at 10 o'clock, dia/height: 2	linch	00:08:49		
	237.0	DAZ	Deposits Attached Other, 59	6 of cross sectional area	from 5 o'clock to 7 o'clock, Finish									
	237.0	DAZ	Deposits Attached Other, 59 Broken Soil Visible from 11	6 of cross sectional area	at 5 o'clock, Finish			110.6	MWL	Water Level, 5% of the vertical dimension		00:09:35		
	278.4	DAZ	Deposits Attached Other, 59	6 of cross sectional area	at 7 o'clock. Start		V /							
	278.4	DAZ	Deposits Attached Other, 59	6 of cross sectional area	at 5 o'clock, Start		■ //	152.8	VC	Vermin Cockroach		00:15:03		
	291.8	DAZ	Deposits Attached Other, 59	% of cross sectional area	at 7 o'clock, Finish									
	291.8	DAZ	Deposits Attached Other, 5%	6 of cross sectional area	at 5 o'clock, Finish			159.4	TF	Tap Factory Made at 10 o'clock, dia/height: 2	linch	00:15:55		
	297.1	DSZ	Deposits Settled Other 5%	h Wall, 5% of cross section of cross sectional area a	nal area from 11 o'clock to 12 o'clock	30		_						
	345.3	MWL	Water Level, 10% of the ver	tical dimension				161.9	VC	Vermin Cockroach		00:16:45		
	345.4	TF	Tap Factory Made at 9 o'clo	ck, dia/height: 2inch										
	357.8	DSF	Deposits Settled Fine, 10%	of cross sectional area a	t 6 o'clock			173.9	HSV	Hole Soil Visible at 12 o'clock		00:20:00		
	368.0	MWL	Water Level, 35% of the ver Miscellaneous Camera Lind	tical dimension				_						
	369.9	MWL	Water Level, 25% of the ver	tical dimension				177.1	TF	Tap Factory Made at 12 o'clock, dia/height: 2	linch	00:21:55		
	436.5	MCU	Miscellaneous Camera Und	erwater, Finish				_						
	436.5	MWL	Water Level, 25% of the ver	tical dimension			H/	204.7	TF	Tap Factory Made at 9 o'clock, dia/height: 2ir	nch	00:32:08		
	471.1	TE	Tap Factory Made at 12 o'cl Tap Factory Made at 10 o'cl	ock, dia/height: 2inch		J		_						
e Segmen				Unstream MH	MH 2	0	¥ /	204.7 501	DAZ	Deposits Attached Other, 5% of cross section o'clock to 7 o'clock, Start / deposit buildup	nal area from 5	00:32:41		
ference								204.7 S02	DAZ	Deposits Attached Other, 5% of cross section	nal area at 5	00:32:47		
У				Downstream MH	MH 3		6	_		o'clock, Start / deposit buildup				
eet al Length	_			Shape Material	Polyvinyl Chloride			210.9	MGO	Miscellaneous General Observation / pipe bu	ubbled	00:33:25		
t	0.0	AMH	Manhole					227.8	DSZ	Deposits Settled Other, 15% of cross section	al area from 6	00:34:29		
I '	0.0	MWL	Water Level, 5% of the verti	cal dimension			/			Contraction of the contract of the contract				
	0.0	VC	Vermin Cockroach				1	229.7	ISSRH	Intruding Sealing Material Sealing Ring Hang cross sectional area from 12 o'clock to 1 o'cl	ging, 5% of ock	00:35:13		
	22.0	VC	Vermin Cockroach											
	43.2	TFA	Tap Factory Activity at 12 of	clock, dia/height: 2inch										

WinCan

Section Pictures - 10/7/2020 Date 10/7/2020 Pipe Segment Reference Section No. Stree central 4

e1925/92-f33d-40e9-9189-635b35363b0a_20201007_093053 _342.jpg, 00:00:00, 0.00ft Water Level, 5% of the vertical dimension

b742d773-7b06-415d-8c83-54ae98028b0c_20201007_09315 9_027.jpg, 00:01:32, 0.00ft Vermin Cockroach

f20c7480-47f2-4836-b6d0-7687b1981c9f_20201007_093620_ 160.jpg, 00:03:59, 22.01ft Vermin Cockroach

a4a6b59e-fa56-41de-aec4-29695eb1dc05_20201007_093800 _776.jpg, 00:05:15, 43.19ft Tap Factory Activity at 12 o'clock, dia/height: 2inch

Pre – Job Review

Review plans and drawings, perform site walk and project scope meeting

Pre - Scan Setup

Calibrate locating technologies to site specific conditions

Locating/Scanning Steps

Electromagnetic locating

Conductive, inductive, and passive sweeps **GPR** Locating

Grid scans to help to locate any unidentified or known utilities Additional locating technologies if needed

Post – Locate Hand Off

Conduct a post job walk and review of findings

Deliverable Submittals

Complete and email the JSR, KMZ and any other deliverable documentation

SUBSURFACE INVESTIGATION METHEDOLOGY

10 A

EQUIPMENT

TRAINING

METHODOLOGY

SUBSURFACE INVESTIGATION METHEDOLOGY

NONDESTRUCTIVE LOCATION AND MARKING OF UNDERGROUND UTILITIE

Site Name:	Project #:		
Site Address:			
City:	State:	Zip:	
Site Contact Name:		Phone:	
Contact Email:		Site-Specific Notes:	

Call 811 and submit markout ticket request for locate in public areas, Ticket#

□ Collect site-specific data related to site history, previous excavation, past construction history and site usage._

Contract with Qualified Private Utility Location Contractor:

- Scanning contractor shall submit record of certification of training that exceeds ASNT, "Practice SNT-TC-1A, Personnel Qualification and Certification in Nondestructive Testing Lev GPR. 8 hours classroom /60 hours field GPR practice.
- Field personnel at minimum certified OSHA 10 Construction Safety Training. Specific safety may apply per site specifics.

Underground Utility Designation Work Scope:

Locate and mark all underground utilities and anomalies in contractor/owner designated area utiliz least two different technologies for redundant results, Ground Penetrating RADAR GPR, EM Pipe Loc

	Confirm work scope communication with site contact.							
	EM System Model#	GPR System Mo	del#					
nticip	ated Utilities:							
	Water		Communications					
	Gas		Industrial Process					
	Sanitary Sewer		Steam					
	Electric		Electric Other					
	Site Lighting		Gas Other					
	Drainage							
IM Inv	restigative Technologies:							
	Ground Penetrating RADAR (GPR)		Metal Detector					
	EM Pipe Locator		Sewer Push Camera					
	Traceable Rodder		Multiple GPR Antenna					
	Traceable Sonde		EMI/Split Box					

SIM Pre-Investigation Checklist:

- Confirm Job Hazard Analysis (JSA), form review, or equal site safety review documentation.
- Confirm and sign site safety plan if applicable.
- Perform site walk and review project scope meeting, review scan locations. Note: Field technician to look for visible clues such as electrical rooms, service access ports like manholes and other utility boxes, visible conduits, etc.
- Perform site contact interview, review known utilities, discuss possible unknowns, and anticipated critical targets. Review site post scan scope of work. Suggest scan area options.
- Utilize job site information, available as-builts and prints/plans and previously detailed equipment to locate and mark out underground facilities and unknown anomalies.
- Review of equipment capabilities and potential job-site performance impedances.
- Confirm if GPR data samples be required for reporting.
- Confirm acceptable on-site type of markings (paint, flags, other), Specify _____
- Review client deliverable requirements, report format/documentation. GPS Mapping etc.

SIM Quality Assurance Procedures:

- Calibrate the GPR system to the conditions at each site per SIM spec guidelines.
- Perform several test scans through the scan area to determine the approximate maximum depth penetration and to gauge the probability of success in finding the desired targets.
- Review the clarity of the scan data. Adjustments in gain, depth range, filters, and other settings may be necessary.

SIM Investigation Methods for Complete Concrete Investigation:

- Trace all known utilities as reviewed in pre-scan meeting.
- Use EM Locator at visible features valve, manhole, riser, etc.
- Use direct connection method when possible.
- (Do not connect directly to potentially live electrical wires) Use induction clamp if direct connection is not possible.
- Use induction method if induction clamp is not possible.
- After connecting or inducing with the transmitter, use the receiver to complete a full 360° sweep around the connection point.
- Mark and trace all potential fields that are detected. During this sweep, measure mA levels on the receiver in order to assist in correctly identifying
- the target line.
- Identify the target line by tracing it to the connection point or at least to the next feature. After tracing and marking any utility, sweep parallel to the utility on both sides in order
- to check for laterals/T's.
- Insert traceable rodder or sonde into known sewer, storm and drain lines.
- Trace the rodder or sonde using the receiver.
- Use EM receiver to attempt to locate any unidentified, known utilities from features using passive modes (Power/Radio).
- Sweep using passive modes parallel to the utility on both sides in order to check for laterals/T's.

SIM Investigation Methods for Complete Underground Utility Investigation (GPR):

- Scan with GPR utility antenna, typical frequency 400 MHz or 350 Hyper stacking antenna.
- Calibrate GPR settings to current site conditions.
- Use GPR to attempt to locate any unidentified, known utilities.
- Collect scans with GPR parallel to any marked utility in order to check for laterals/T's.
- Document any known utilities that could not be located.
- Redundancy strategy, EM used in conjunction with GPR, perform passive sweeps with electromagnetic locator to locate unknown utilities.
- Redundancy strategy, EM used in conjunction with GPR, Sweep all areas in a grid with spacing determined by site conditions.
- Redundancy strategy, EM used in conjunction with GPR, Sweep separately with Power mode and Radio mode (and Cathodic Protection mode when applicable) Collect GPR scans to locate unknown utilities.
- Scan all areas in a grid with spacing determined by site conditions.
- Collect GPR scans across all previously located utilities to confirm locations and approximate depths. Document findings with photos and additional reporting/mapping if required.

SIM Post Investigation Hand Off:

- Conduct a recap and review of findings with site contact.
- Explain scan findings--Where did the technologies work well and where results were inconclusive due to interference and or soil conditions.
- Explain markings and depth estimates.
- Review original scope to confirm expectations were met/exceeded.

Notes Regarding Scan Data Collection and Quality:

Additional Investigation Notes:

This checklist details steps and methods that ensure the best nondestructive underground utility location results. The SIM approach, (experienced-based training combined with multiple technologies, and step-by-step site methods) has proven to be consistently accurate and efficient in accounting for site variability.

Please visit www.simspec.org for more information and detailed SIM specification.

Subsurface utility engineering – asce

Standard Guideline for Recording and Exchanging Utility Infrastructure Data

Subsurface Utility Engineering for Municipalities

Sue Utility Investigation School

JIM ANSPACH, pg https://bami-i.com

Utility Engineering and Surveying Institute (UESI)

https://bami-i.com/utility-investigation-school/

Locating type COMPARISON CHART

	811 DESIGN TICKET	PRIVATE UTILITY LOCATE	811 DIG TICKET	SUE REPORTING
WHEN COMPLETED	design	Design and construction	construction	design
Plans provided	sometimes	Yes / depends	no	yes
cost	free	\$	Free	\$\$\$
Required by law or a project	no	no	yes	sometimes
All utilities identified	Yes, If registered with 811	Yes, if locatable using technology	Yes, If registered with 811	Yes, to the best of the al of the engineer that sign seals
Accuracy	Questionable. Depends on records.	18"=/- and with depth where active connection or gpr	48"=/- caution zone and 18" hand exposure zone. Typically No depths.	Based on quality leve designated by the engin
What is involved	Either plans provided or field markings	Field marking and various deliverable	Field markings	Plan research record drawings, Field marking, and vari deliverables
Tools	None or emi pipe locator	Emi pipe locator Some also implement gpr, vpi GPS or hand sketch	Emi pipe locator	Level d: Plan Researc Level C: Total Station or Level B: Emi pipe locat gpr, Vpi, thumper, oth Level A: Hydro excavation softdig

🕞 n^

🕒 < 🖨 < 🖓 🗘

Ū

+

 \odot

 \odot

11

30 ft

2023-04-24-56863-CUP-SCANS-MOB-2

O

Locating type COMPARISON CHART

-

		100
ownstrea	Material	Shape
/H 5053	RCP	Circular 20
4H 5052	RCP	Circular 20 :
1H 5052	RCP	Circular 20
ST MH 2	RCP	Circular 15
ST MH 3	RCP	Circular 15

00:00:01	MH 50
00:00:03	
00:01:10	
00:03:20	
00:03:48	
00:04:29	

MATT JOHNSON CELL: (734) 249-2051 EMAIL: matt.johnson@gprsinc.com

MATT MIKOLAJCZYK, PE CELL: (419) 410-8811 EMAIL: matt.mikolajczyk@gprsinc.com

