HMA TESTING EQUIPMENT AND METHODS

Kevin J. Glupker, PE CEW – February 8, 2022

Acceptance Testing Requirements

OUTLINE

- PREPARING FOR TESTING
- SAMPLING
- DETERMINING COMPOSITION OF MIXTURE
- VOLUMETRIC TESTING
- TEST RESULTS AND RELATIONSHIPS

Acceptance Testing Requirements

Pre-Production Meeting is KEY

- Sampling Method
- Asphalt Content Procedure
- Method for Measuring In-Place Density
- Contractor Lab Use?
- Dispute Resolution Lab
- Special Provision for HMA Acceptance

*QC Lab and QA Lab Should be Present

Acceptance Testing Requirements

MIX DESIGN for Targets

- Aggregate Gradation
- <u>Aggregate Source</u>
- Asphalt Content
- Volumetrics
- In-place Density

HMA Sampling

STARTS OR ENDS WITH SAMPLING

- A number of sampling methods.
- Splitting sample to proper size.

curate

- A sample must be representative of material being produced!
- Sample Certified

- <u>Too Coarse Result in Lower AC content</u>
- <u>Too Fine Result in Higher AC Content</u>
- Also Affect TMD

The **Asphalt Content** is probably the most important component in the HMA

- <u>Solvent Extraction Method.</u> A sample of asphalt mixture is placed in a solvent and the asphalt is removed from the aggregate. This allows the amount of asphalt to be determined. <u>Hazardous Solvents.</u>
- Ignition Extraction Method. This test determines the asphalt content by burning out the asphalt allowing the amount to be determined. <u>Need Correction Factors!</u>
- * Back calculation not allowed for LAP projects.

Solvent Extraction Method.

Vacuum Extraction

Ignition Extraction Method.

- Correction Factors!
- Ignition Temperatures!
- 1,000 Deg F

Determined from the aggregate blend once the binder has been removed from either the Solvent Wash or Ignition Oven

- Gradation
- Crushed content

SPECIAL PROVISION: ACCEPTANCE OF HMA MIXTURES ON LOCAL AGENCY PROJECTS

		Parameter	Top and Leve	Top and Leveling Course Base Co		ourse
Number	Description		Range 1 (a)	Range 2	Range 1 (a)	Range 2
1	% B	inder Content	-0.30 to +0.40	±0.50	-0.30 to +0.40	±0.50
	ing	# 8 and Larger Sieves	±5.0	±8.0	±7.0	±9.0
2	% Passi	# 30 Sieve	±4.0	±6.0	±6.0	±9.0
		# 200 Sieve	±1.0	±2.0	±2.0	±3.0
3	Cru	rushed Particle Content (b) Below 10% Below 15% Below 10% Below 15			Below 15%	
 a. This range allows for normal mixture and testing variations. The mixture must be proportioned to test as closely as possible to the Job-Mix-Formula (JMF). b. Deviation from JMF. 						

Table 1: Uniformity Tolerance Limits for HMA Mixtures

Pay Adjustment Parameters: <u>Binder, Gradation, Crushed Content</u> <u>Two consecutive tests</u> (same parameter) to trigger a pay adjustment

*Requires at least Bit Level One Certification

SPECIAL PROVISION: ACCEPTANCE OF HMA MIXTURES ON LOCAL AGENCY PROJECTS

Table 4. Calculating Total Price Aujustinent				
Cost Adjustmen	t as a Sum of the Two Highest Para	meter Penalties		
Number of Parameters Out-of-Specification	Range(s) Outside of Tolerance Limits of Table 1 per Parameter	Total Price Adjustment		
One	Range 1	10%		
One	Range 2	25%		
	Range 1 & Range 1	20%		
Тwo	Range 1 & Range 2	35%		
	Range 2 & Range 2	50%		
	Range 1, Range 1 & Range 1	20%		
Three	Range 1, Range 1 & Range 2	35%		
Thee	Range 1, Range 2 & Range 2	50%		
	Range 2, Range 2 & Range 2	50%		

 Table 4: Calculating Total Price Adjustment

Pay Adjustment Parameters: <u>Binder and Gradation</u> <u>Two consecutive tests</u> (same parameter) to trigger a pay adjustment Volumetrics are the relationships between **mass** and **volume**

Specific gravity is the ratio of the density of a material to the density of a reference substance

Requires **Bit Level Two Certified** or Bit **QA/QC Technician Certified** to perform testing

Most mix designs are now conducted in accordance with the Superpave procedures and criteria. However, Marshall mix are still common on the local agency and commercial projects. The primary component of these tests is to compact the HMA using some specified compaction effort and determining the volumetric properties.

- or -

Marshall

Superpave

Marshall

Common Marshall Mixes

- 2C Base
- 3C Leveling
- 4C Wearing
- 13A Base, Leveling, Wearing
- 36A Wearing
- Impact method of compaction
- <u>Load perpendicular</u> to compaction axis
- Does <u>not</u> consider <u>shear strength</u>
- <u>Standard compaction</u> between mixtures

Superpave Mixes – 2003

LVSP, #E03, #E1, #E3, #E10, #E30, #E50

Superpave Mixes – 2020 (Mix Reduction) EL, #EML, #EMH, #EH

- Compaction Method <u>simulates field</u>
- <u>Estimates density</u> at critical service points (ini, des, max)
- <u># Gyrations (compaction) adjusted</u> based on traffic

Gyratory Compactor

ESAL		2003 Mix	2020 Mix	2003 Ni, Nd, Nm	2020 Ni, Nd, Nm	
0.0-0.3		LVSP		6, 45, 70		
0.0-0.3	0.0-0.3	E03	EL	7, 50, 75	7, 50, 75	
0.3-1.0	0220	E1	EML	7, 76, 117	7 75 115	
1.0-3.0	0.5-3.0	E3		7, 86, 134	7, 75, 115	
3.0-10	2 0 20	E10	ENAL	8, 96, 152	8/100/160	
10-30	5.0-50	E30	LIVIH	8, 109, 174	0 100, 100	
30-100	30-100	E50	EH	9, 126, 204	9, 125, 205	
4E1 4EMH						

Compacted to N - Design

KEY TERMS

- Bulk Specific Gravity (G_{mb}) of compacted HMA
- Maximum Specific Gravity (G_{mm})
- Air Voids (V_a)
- Voids in mineral aggregate (VMA)
- Voids filled with asphalt (VFA)

*Covert Specific Gravity to Density: SG x 62.4

(Specific weight of water lb/ft³)

HMA Volumetrics – Air Voids

- Measure of air, Percentage of total volume
- Typically, 3 to 4 percent laboratory compacted
- There are two properties that are used to determine the air voids in the mixture.

Calculated Using:

- Bulk SG of the Compacted Sample
- Theoretical Maximum SG

$$Air Voids = 100 * \left[\frac{Gmm - Gmb}{Gmm}\right]$$

The <u>first property</u> that is needed to determine <u>air voids</u> in a mixture is the <u>bulk SG of the compacted mixture</u>, which is determined by weighing the sample in air and then weighing while submerged in water and calculating the bulk density.

Testing (G_{mb})

- Compact Sample (Gyratory or Marshall)
- Mass of dry sample
- Mass under water
- Mass saturated surface dry

- Compact Sample (Gyratory or Marshall)
- Mass of dry sample
- Mass under water
- Mass saturated surface dry

- Compact Sample (Gyratory or Marshall)
- Mass of dry sample
- Mass under water
- Mass saturated surface dry

<mark>2,854.8 g</mark>

- Compact Sample (Gyratory or Marshall)
- Mass of dry sample
- Mass under water

Mass saturated surface dry

<mark>4,858.3 g</mark>

- A = mass of dry sample
- B = mass of SSD sample
- C = mass of sample under water

The **second property** that is needed to determine the **<u>air voids</u>** in a mixture is the **<u>theoretical maximum SG</u>**, which is the SG at which there would be no air voids.

<u>Testing (G_{mm})</u>

- Mass in air
- Mass under water

HMA Volumetrics – Maximum SG of Mixture

Mass of dry sample

• Mass under water

Loose Dry Mixture at Room Temperature

HMA Volumetrics – Maximum SG of Mixture

- Mass in air
- Mass under water

<mark>1,305.7 g</mark>

- Metal Bowl
- Shaker Table
- Vacuum Pump

HMA Volumetrics – Maximum SG of Mixture

Theoretical Maximum Density

$$G_{mm} = \frac{A}{(A-C)}$$
 2.497 = $\frac{2,178.2}{(2,178.2-1,305.7)}$
Where: 2.497 * 62.4 = 155.8 lb/ft³

- A = mass of dry sample
- C = mass of sample under water

HMA Volumetrics – Air Voids

Now that we have calculated:

- Bulk SG of the Compacted Sample (G_{mb})
- Theoretical Maximum SG (G_{mm})

$$Air \, Voids = 100 * \left[\frac{G_{mm} - Gmb}{G_{mm}}\right]$$

$$2.88 = 100 * \left[\frac{2.497 - 2.425}{2.497}\right]$$

Deviation 0.12, Target 3%

HMA Volumetrics - VMA

- VMA is a measure of the voids in between the mineral aggregate particles in a compacted mixture.
- Determined by? G_{mb}, %AC, G_{sb}
- When the VMA is too low, enough asphalt can not be added to produce a durable mixture. So setting a minimum VMA is an approach that is used to <u>ensure that</u> <u>adequate asphalt is added</u> to the mixture.

$$VMA = 100 - \frac{G_{mb} * \% Aggregate}{G_{sb}}$$

$$14.69 = 100 - \frac{2.425 * (100 - 5.75)}{2.679}$$

VMA is an indication of film thickness on the surface of the aggregate

HMA Volumetrics - VFA

Another mixture property that is important is the **amount of the VMA that is <u>filled with asphalt.</u>**

The voids filled should be high enough so that the mixture is not permeable to air and water and not so high that bleeding and rutting occur under traffic.

$$VFA = 100 \ x \ \frac{VMA - \% \ Air \ Voids}{VMA}$$

$$80.39 = 100 x \frac{14.69 - 2.88}{14.69}$$

VFA is the percent of VMA that is filled with asphalt binder

HMA Volumetrics - LAP PILOT

SPECIAL PROVISION: VOLUMETRIC SINGLE TEST ACCEPTANCE OF HMA MIXTURES ON LOCAL AGENCY PROJECTS

- SINGLE TEST ACCEPTANCE (STA)
- STA SAMPLES LESS THAN 1,000 TONS
- VI UP TO 500 TONS PER MIXTURE TYPE PER PROJECT
- Pay Adjustment Parameters: Density, Air Voids, Binder, & VMA

HMA Volumetrics - LAP PILOT

SPECIAL PROVISION: VOLUMETRIC SINGLE TEST ACCEPTANCE OF HMA MIXTURES ON LOCAL AGENCY PROJECTS

Table 1: HMA Quality Index Parameters Specification Limits

Quality Index Parameter	Specification Limits
Air Voids, %	Target Air Voids ± 0.50
Vma	Target Vma ± 0.60
	Vma Targets
13A and LVSP	15.00
2C and 2E	2C - 12.00, 2E - 13.00
3C and 3E	14.00
4C and 4E	15.00
36A and 5E	16.00
Binder Content	Target ± 0.30

 $OSPF = (30 \times PF_D) + (40 \times PF_{AV}) + (20 \times PF_{BINDER}) + (10 \times PF_{VMA})$

STA sample Payment Adjustment = (100-OSPF)/100 x (Contract Unit Price) x (STA sample Quantity).

<u>Single Test</u> to trigger a pay adjustment

HMA Volumetrics - LAP PILOT

SPECIAL PROVISION: VOLUMETRIC SINGLE TEST ACCEPTANCE OF HMA MIXTURES ON LOCAL AGENCY PROJECTS

Deviation from JMF (± percent)	PF _{AV}	Deviation from JMF (± percent)	PF_{VMA}
≤ 0.50	1.00	≤ 0.60	1.00
0.51 – 0.60	0.98	0.61 – 1.00	0.90
0.61 – 0.70	0.96	1.01 – 1.50	0.70
0.71 – 0.80	0.94	1.51 – 2.00	0.30
0.81 – 0.90	0.92	> 2.00	RQL
0.91 – 1.00	0.90		-
1.01 – 1.20	0.84		
1.21 – 1.40	0.78		
1.41 – 1.60	0.72		
1.61 – 1.80	0.66		
1.81 – 2.00	0.60		
> 2.00	RQL	Rejectable Quality Limit	

Overall STA Sample Pay Factor

 $OSPF = (30 \times PF_D) + (40 \times PF_{AV}) + (20 \times PF_{BINDER}) + (10 \times PF_{VMA})$

STA sample Payment Adjustment = (100-OSPF)/100 x (Contract Unit Price) x (STA sample Quantity).

In-Place Density

Density Testing

- Destructive Testing: Cut cores from the in-place mixture and measure the bulk density by weighing in air and water. This is the <u>most</u> <u>accurate test</u>.
- Non-Destructive Testing: Density Gauge

RICE AND BULK SG OF AGGREGATES

- **Theoretical Maximum Specific Gravity** (rice value) **is the key** measurement during both laboratory mix design and quality control procedures.
- Change in Rice value may indicate a change in the Bulk Specific Gravity of the Aggregate. <u>Material Substitution!</u>
- G_{sb} can have a big affect on volumetric property calculations which are typically taken from the mix design. Determining of G_{sb} is somewhat cumbersome.
- However, Effective SG of combined aggregate can be calculated from QC routine test results including mixture G_{mm} and asphalt content. Monitored during productions.

LOW ASPHALT CONTENT

- <u>Higher Air Voids</u>
- <u>Higher TMD</u>
- <u>Permeability Increases</u> causing susceptible to moisture damage and stripping
- <u>Reduces film thickness</u> on the aggregate accelerated
 <u>oxidation</u> early aging and loss of roadway life.

HIGH ASPHALT CONTENT

- Lower Air Voids.
- Lower TMD.
- <u>VMA</u> will generally <u>decrease slightly</u> to a minimum value <u>then increase</u> with increasing asphalt contents becoming unstable.
- **Increases VFA** and takes the space for air voids.

Relationships – Gradation and Voids

- Dense graded <u>BUT</u> not too dense! Need VMA
- Higher fines = lower % air voids compacted
- Aggregate texture & shape affect void content.
- Higher VMA for smaller aggregate mixtures (more void space)
- Smaller crushed aggregate can increase VMA

- Percent compaction when <u>compared to TMD</u> is = to compacted air voids
- This is different to specification that **compare to Marshall**.
- For local agency project looking for field compaction from 92% to 98% TMD compaction (2% to 8% air voids)

Relationships – TMD and Density

OBTAINING DENSITY MAY BE MOST IMPORTANT TO LONG TERM PERFORMANCE!

Accurate TMD value is <u>Critical</u> for mix that is being placed!

- EX. 143.0 (gauge reading)
 - 143.0 / **155.4** (JMF) = 92.0
 - 143.0 / **155.8** (New Rice) = 91.8

Low AC, Higher TMD

QUESTIONS

