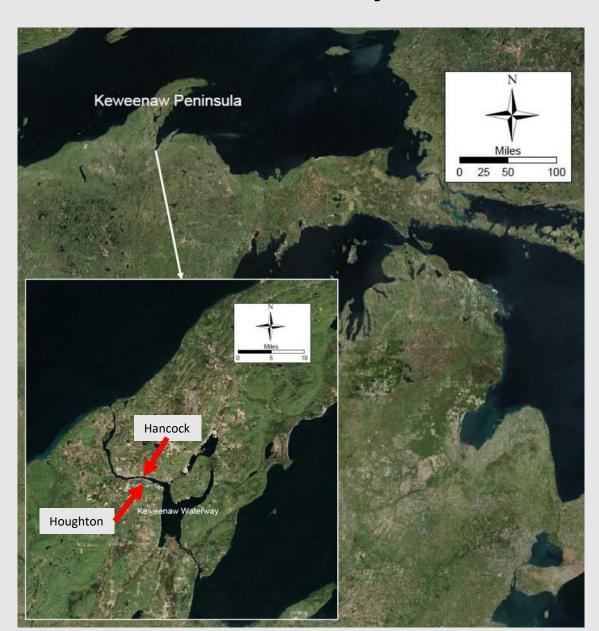
Crossing the Keweenaw Waterway in an Emergency with a U.S Army Floating Bridge

Photo: John Kiefer

William Leder, Adjunct Professor (Ret.)

Department of Civil and Environmental Engineering



Presentation Objectives

- Context The Keweenaw Peninsula
- Explain the importance an emergency <u>IRB</u>** crossing
- How the preferred crossing location was selected
- Details of the proposed crossing infrastructure
- Traffic flow analysis
- Identify next steps leading to implementation

** Improved Ribbon Bridge

Keweenaw Waterway Location

March 3, 1865 Rivers and Harbors Act

Portage Lake Lift Bridge

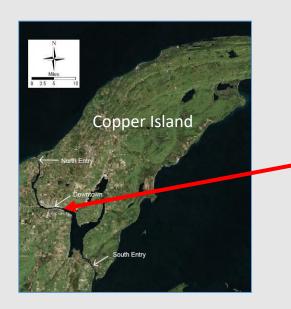


Photo: Adam Johnson

- Opened in 1959
- Only roadway link between "Copper Island" and the mainland
 - 21,000 people live north of the bridge
- 27,000 daily crossings;
 2.5 times the traffic on the Mackinac Bridge
- Vital for emergency services, economy, institutions, and society

Why an Emergency Crossing is Vital

- Only vehicular link between Copper Island and the mainland
- Separation of key components of community
 - Both hospitals and only airport located north of the bridge
 - Food, fuel, medicine, and other essentials must flow north
 - Mix of employers and employees on both sides
 - Commerce and businesses on both sides
 - Michigan Tech on south side, Finlandia on north side

Vulnerabilities

What could happen?

- Electro-mechanical failure
 - Failure in August 2010 put bridge out of operation for 3 hours
- Struck by a vessel
- Major roadway transportation accident and ensuing fire

Assessing the Risk

Risk = Probability x Consequences

The *probability* of occurrence is low But the *consequences* are very high

Therefore, the *risk* must be addressed

Bridge Collision – Ems River, Germany

December 2015

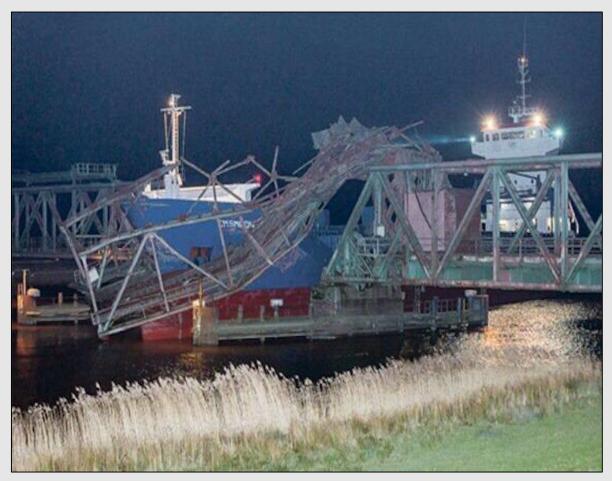


Photo: Jan-Timo Häckel

Oakland Maze Bridge Fire – California

April 2007

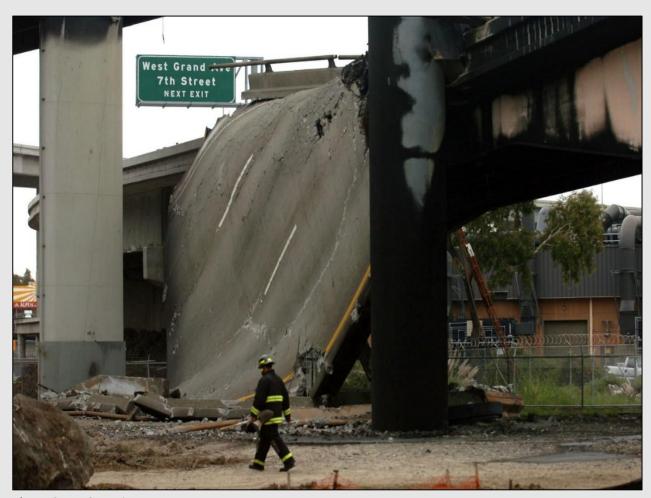


Photo: Contra Costa Times

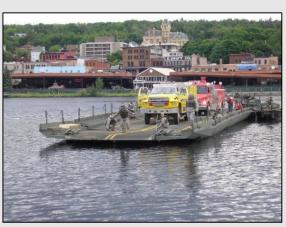
Gasoline Tank Truck Accident - Chassell

February 2018

Photo: Daily Mining Gazette

4,500 gallon fuel spill

Improved Ribbon Bridge (IRB)


- U.S. Army modular floating bridge deployed by the Michigan National Guard
 - Ramp bays 2 lanes by 22 feet long
 - Interior bays 2 lanes by 22 feet long
 - 704 foot maximum length

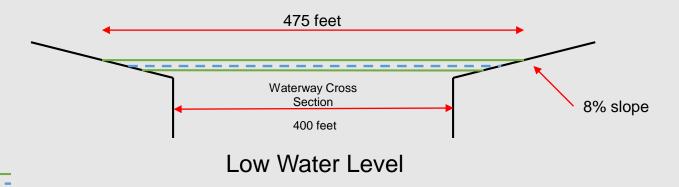
Launch

Rafting

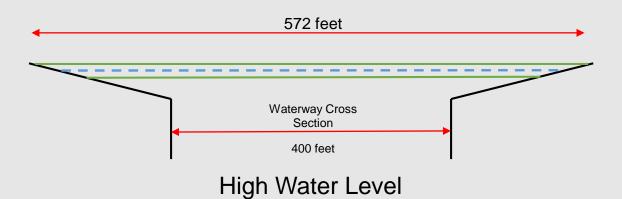
Photo: Primeportal.net

Full Enclosure

Photo: Primeportal.net


Objectives of Keweenaw Waterway Emergency Deployment

- Robust rafting between Houghton and Hancock
 - Operating like a ferry for vital movements (emergency vehicles, food, fuel, buses, and other high priority vehicles)
- Full enclosure at the preferred crossing location
 - Used for public conveyances
 - Two lane bridge for all types of highway vehicles


Lake Superior Water Levels

- 100 years of water level data
 - Low water = 599.48 feet (April 1926)
 - High water = 603.38 feet (October 1985)
 - Range = 3.90 feet
- The full enclosure length exceeds the shore-to-shore distance
 - Water will rise some distance up the on-shore access ramp

Lake Superior Water Levels Cross Sections at Lily Pond

IRB Floating on Water

Lake Superior Water Levels Houghton County Marina

Three Potential Crossing Locations

South Entry

- Narrowest shore-shore span = 530 ft.
 - Few IRB bays for rafting
- 82 mile round trip
 - Energy use and emissions
- Existing roads not highly developed
- No publicly owned land on either side

Photo: USACE

Ruled Out

Downtown Houghton and Hancock

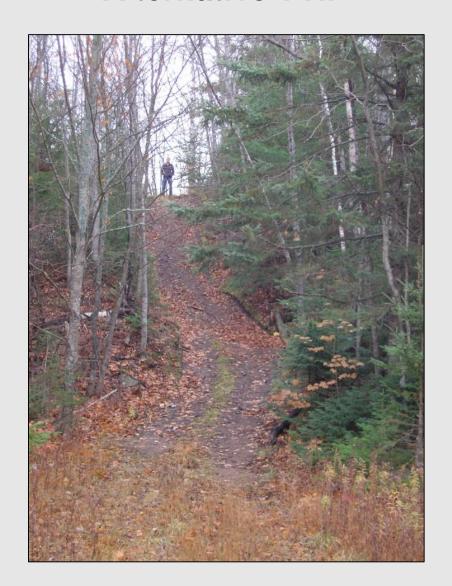
- Narrowest shore-shore span = 540 ft.
 - Few IRB bays for rafting
- Crossing would run through historic Quincy Smelting Works
- Full enclosure could impede rafting
- Problematic road geometry
- Potential traffic impacts in downtown areas

Ruled Out

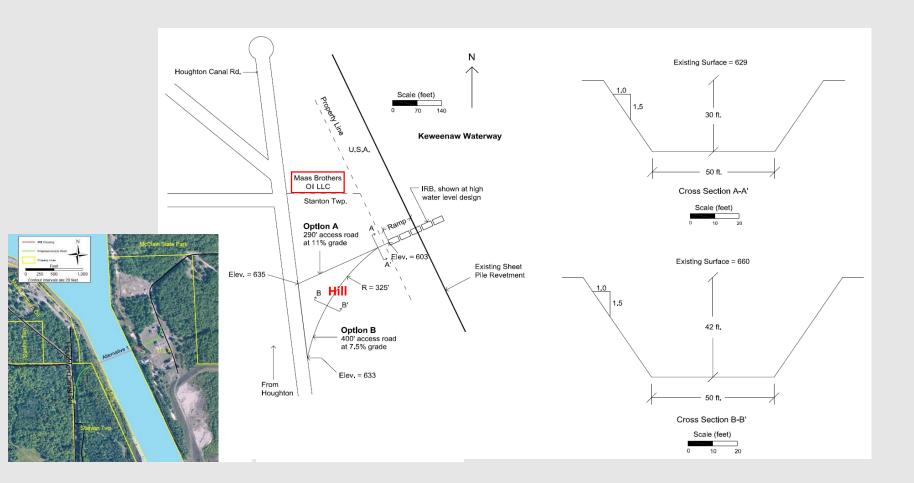
North Entry

- Shortest shore-shore span of 400 feet
- Almost all of land is publicly owned
- Two potential crossing sites

Photo: USACE


North Entry – Alternative 1

- 40 mile round trip
- Private property on west side
- Unacceptable access road grades on west side
- Concern about high waves
- Deep cuts for access roads
 - Makes snow removal challenging
 - High erosion potential
- No wetlands, but significant environmental impacts due to excavation



Ruled Out

Alternative 1 Hill

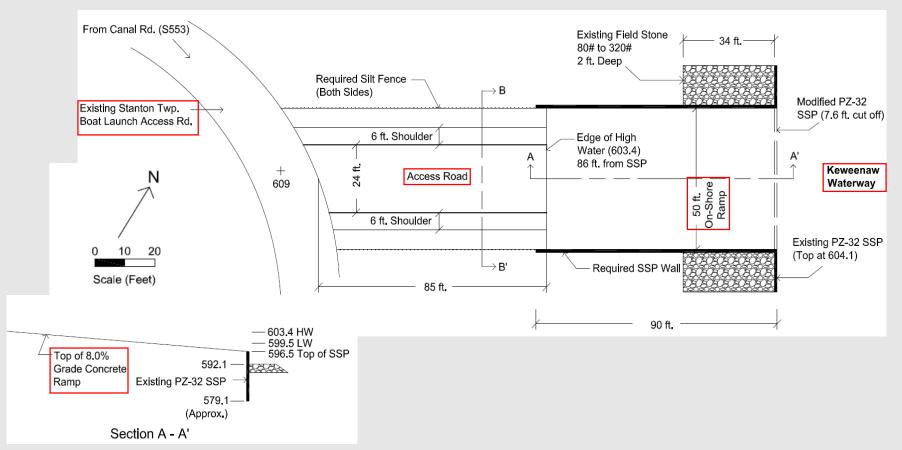
Alternative 1 Details

North Entry – Alternative 2

- 36 mile round trip
- Takes advantage of existing roads
 - West Stanton Twp. Boat Launch
 - East two track off of M-203
- Acceptable road profiles
- Reduced waves
- Minimal total wetland impacts

Preferred Site

- Uses existing Stanton Twp. Boat Launch Access Road
 - Land is owned by Stanton Twp. or U.S.A.
- 90 foot long by 50 foot wide concrete ramp at 8%
 - Modifications to steel sheet pile revetment required
- New 85 foot long access road
- Total wetland impact = 7,050 ft² (0.16 acres)

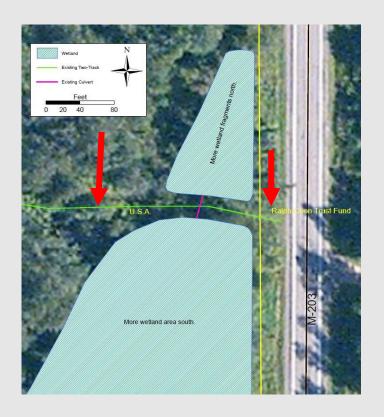


- Uses existing Stanton Twp. Boat Launch Access Road
 - Land is owned by Stanton Twp. or U.S.A.
- 90 foot long by 50 foot wide concrete ramp at 8%
 - Modifications to steel sheet pile revetment required
- New 85 foot long access road
- Total wetland impact = 7,050 ft² (0.16 acres)

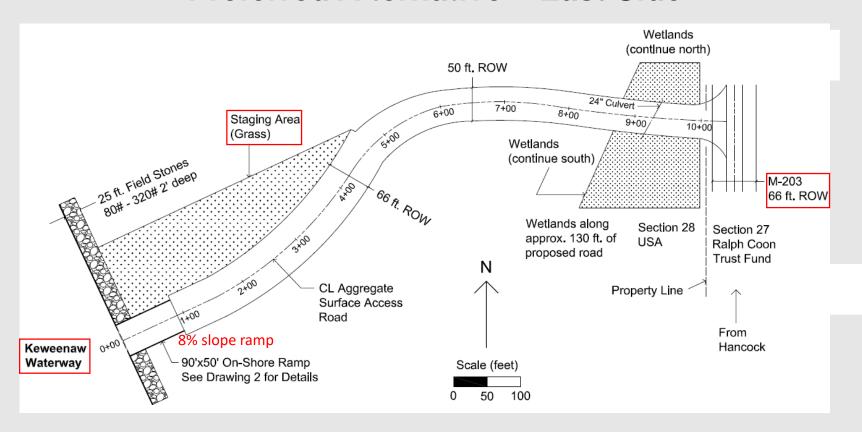
Ramp Construction

Water inflated rubber membrane cofferdam

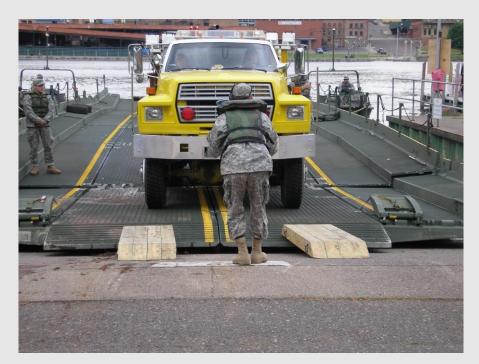
Photos: Aqua Dam, Inc.


- Uses existing two track off of M-203
 - Widen to accommodate two lanes
- Crosses small slice of private property
- Crosses small wetland areas
 - Two track is not considered wetland
 - Culvert connects the two fragments
 - Wetland impacts = 1,990 ft² (0.05 acres)
- Cleared grassy area that can be used for staging

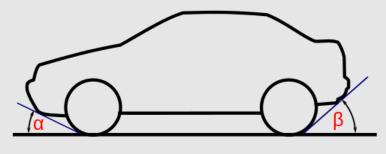
- Uses existing two track off of M-203
 - Widen to accommodate two lanes
- Crosses small slice of private property
- Crosses small wetland areas
 - Two track is not considered wetland
 - Culvert connects the two fragments
 - Wetland impacts = 1,990 ft² (0.05 acres)
- Cleared grassy area that can be used for staging

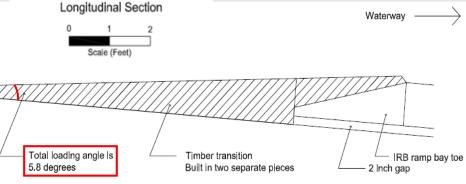


- Uses existing two track off of M-203
 - Widen to accommodate two lanes
- Crosses small slice of private property
- Crosses small wetland areas
 - Two track is not considered wetland
 - Culvert connects the two fragments
 - Wetland impacts = 1,990 ft² (0.05 acres)
- Cleared grassy area that can be used for staging



Timber Transition




Timber Transition

Shore ramp surface at 8% grade

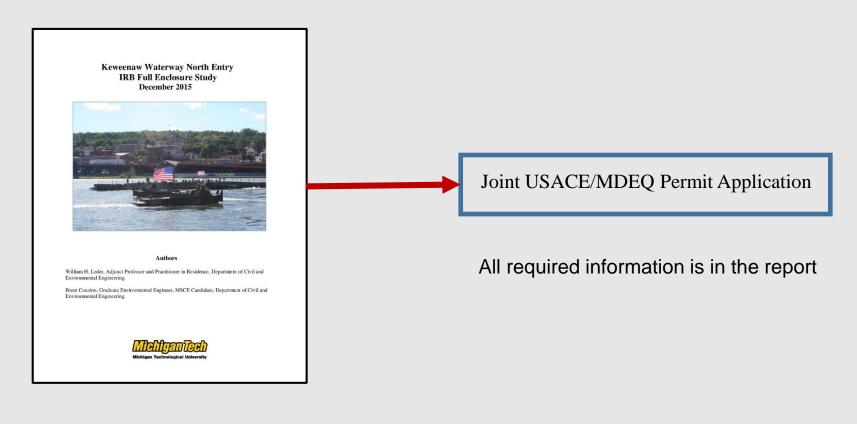
- Must design for all angles of approach and departure
 - Angle of 5.8° will accommodate all vehicles
- Timber transition design spans full width of lanes
- Can be tested at Lily Pond Boat Launch
 - Both have 8% grades

Source: www.commons.Wikipedia.org

Theoretical IRB Traffic Flow

Condition *	Vehicle Spacing (feet)	Max Speed (MPH)	Capacity/Direct (autos per ho		Lift Bridge Volume (northbound autos)
Normal – 25 mph	100	25	1,318	106%	1,238
Normal – 15 mph	100	15	791	64%	1,238
Caution – 5 mph	170	5	153	12%	1,238
Risk	580	3	31	3%	1,238

^{*} Condition a function of wave height and weather as determined by 1437th field commander.


Measured Lift Bridge Traffic Volumes, 10/01/13, 4 to 5 pm

All vehicle types	Northbound	Southbound
All vehicle types	1,305	1,111
Autos only	1,238	1,054

Traffic volumes will be less during a lift bridge outage. How much?

^{**} Based on theoretical calculations. Actual rates will be less.

First Step – Permit

Next Steps

- Joint USACE/MDEQ Application
- 1437th MNG exercise at Lily Pond
 - Same 8% slope
- Develop operational plans
- Civil Engineering Design
- USACE Section 408 Design Review
- Secure grant funding
- MOUs and property acquisition
- U.S. Coast Guard Bridge Permit Application

Lily Pond Boat Access Site

Photo: John Kiefer

Acknowledgements

- Jack Dueweke and Chris Van Arsdale, Houghton County Emergency Measures Directors
- Sergeant First Class Justin Proulx, 1437th MNG
- Senior Chief Ed Iverson, U.S. Coast Guard Station Portage
- John Paul Pietila, Traverse Engineering
- Jamey Markham, Stanton Township Supervisor
- Many others