Guidelines for Designing Bridges in Michigan Suitable for Local Agencies

Christopher Eamon Ihab Darwish Ahmad Alsendi MDOT RAP (PM: Keith Cooper)

Wayne State University

Alfred Benesch & Co.

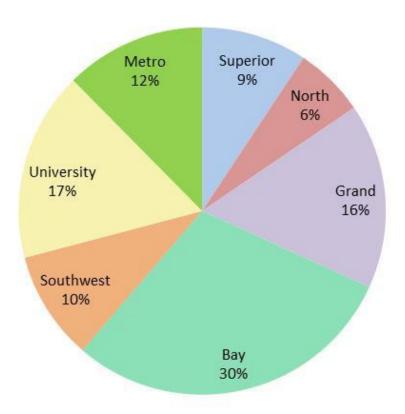
benesch

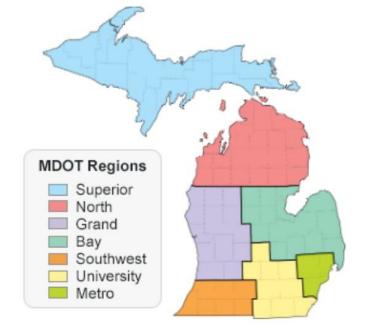
2018 Michigan Bridge Conference

March 20, 2018

Overview

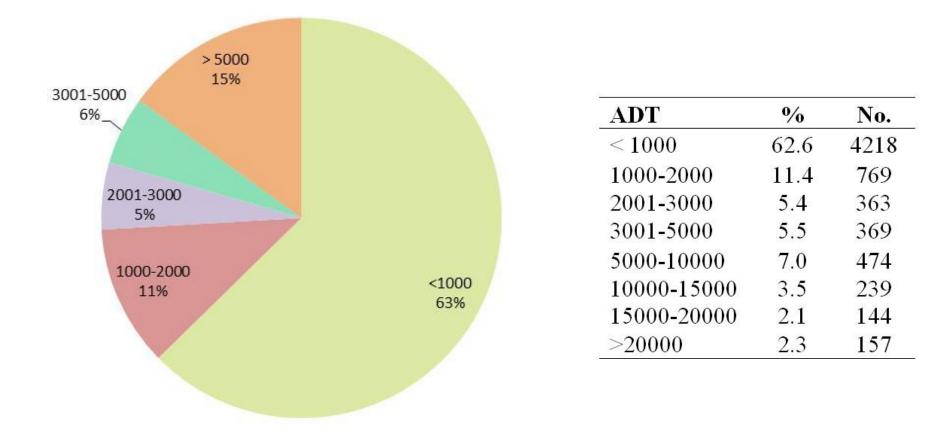
- Background
- Guideline Development
- Example: Steel Bridge Plans


Background


Michigan Local Agency Bridges

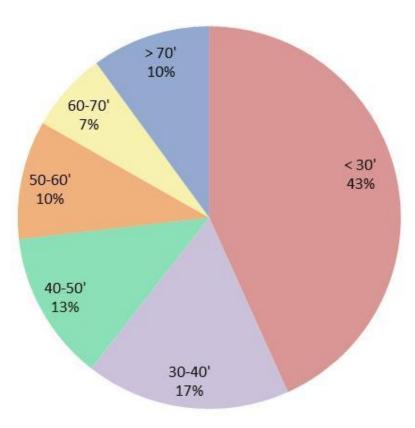
- 6675 structures (vehicles, length \geq 20')
- 87% owned by County Highway Agencies
- 86% rural
- 97% span over water
- 30% girders; 34% box beam; 23% culvert

Location



 Most (63%) in Bay, Grand, and University Regions

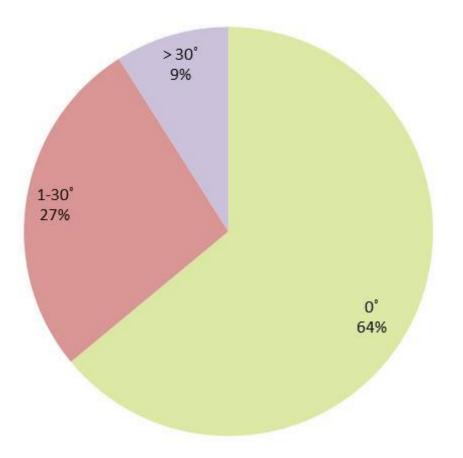
Region	%	No.
Superior	9.3	620
North	6.2	414
Grand	16.3	1085
Bay	29.5	1967
Southwest	9.6	644
University	16.7	1118
Metro	12.4	827


Traffic Volume

• Most (63%) < 1000 ADT

Span Lengths

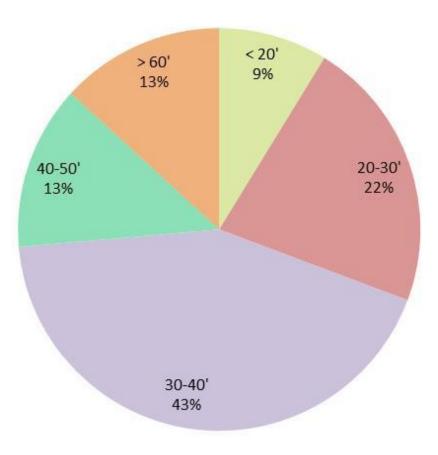
Max span (ft)	%	No.
< 30	43.1	2878
30-40	17.2	1146
40-50	12.6	844
50-60	10.0	670
60-70	6.7	450
70-80	4.1	273
80-90	2.3	151
90-100	1.5	102
100-120	1.3	88
120-140	0.6	43
140-160	0.1	4
>160	0.3	17
No info.	0.1	10


43% < 30'

• Most are short: 73% < 50'

98% < 100'

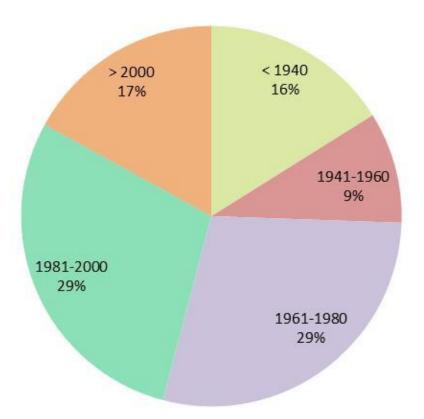
Skew



Skew (deg)	%	No.
0	61.9	4130
1-30	27.0	1803
31-60	7.9	525
60-99	0.6	40
No info.	2.7	179

• 91% < 30°

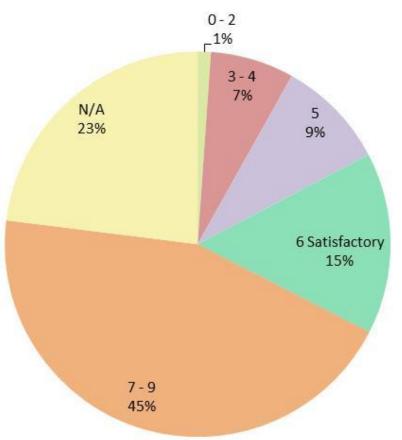
Deck Width



Width (ft)	%	No.
< 20	8.2	550
20-30	20.6	1375
30-40	40.2	2681
40-50	12.4	830
50-60	4.1	272
> 60	8.3	557
No info.	6.1	410

• Most (56%) from 30 - 50'

Year of Construction



Year	%	No.
< 1921	3.9	258
1921-1940	12.3	819
1941-1960	9.4	625
1961-1980	28.4	1898
1981-2000	28.7	1917
> 2000	16.9	1125
No info.	0.5	33

- Most (58%) built from 1960-2000
- ~ 25% 60+ years old

Condition of Superstructure

Condition	%	No.
0 Failed	0.1	9
1 Imminent Failure	0.1	10
2 Critical	0.9	63
3 Serious	2.6	185
4 Poor	4.4	312
5 Fair	9.2	647
6 Satisfactory	15.2	1063
7 Good	23.7	1663
8 Very Good	18.6	1306
9 Excellent	2.1	144
N N/A	22.5	1579

- Most (45%) rated good or better
- 17% less than satisfactory
- Over 16% posted < legal

Summary

MI Local Agency Bridges:

- Short Span (98% < 110')
- Low skew (91% < 30°)
- Moderate width (87% < 50')
- Over water (97%)
- Concerning condition (25% age 60+; 17% unsatisfactory & posted)

Previous Bridge Plan Development Efforts

- <u>TRB</u>: *Innovative Bridge Designs for Rapid Renewal* (SHRP2; TRB 2014): plans for ABC; used by Iowa, Vermont, New York DOTs
- <u>PCI</u>: Guidelines for Accelerated Bridge Construction Using Precast / Prestressed Concrete Components (PCI 2006)
- <u>PennDOT</u>: Rapid Bridge Replacement Project replaced over 500 structures (2015)
- <u>MoDOT</u>: Safe & Sound Program: plans used to replace 550 bridges (2013)
- <u>lowaDOT</u>: Plans for prefabricated bridge components (Rossbach 2014).
- <u>SDDOT</u>, <u>INDOT</u>: Plans for fast construction (Rossbach 2014).
- <u>UDOT</u>, <u>Idaho DOT</u>, <u>WSDOT</u>: Plans for precast construction (TRB 2014).

This project: Local agency bridges rather than ABC

Purpose of Guidelines

Desired outcomes for new bridges

"Low cost, low maintenance, easily constructible"

- Reduce problematic design and construction issues
- Improve quality control
- Increased durability
- Lower life cycle costs
- Efficiency by using recurrent specifications and layouts

Scope of Guidelines

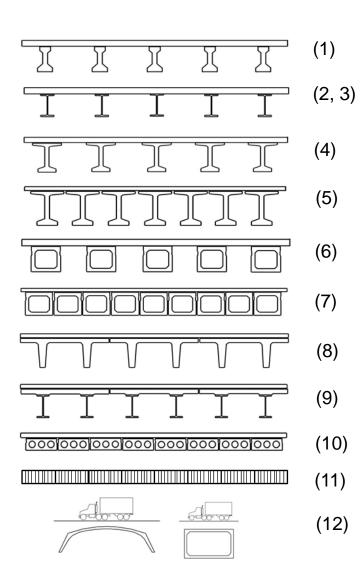
- Provide design suggestions for local agency bridges
- Present recommended bridge geometries, girder selections, and details

Format: bridge selection charts, construction notes, bridge plan templates

Audience

• Local agency representatives and their consultants

What the Guidelines are not


- Not a set of new MDOT standards
- Not required
- Not "off the shelf" plan sheets: templates
- Not complete designs
- Do not cover all cases
- Not meant to lower design costs

Guideline Development

Initial Concepts

- 1) AASHTO/PCI beams
- 2) Painted steel beams
- 3) Galvanized steel beams
- 4) Spread bulb tees
- 5) Side-by-side bulb tees
- 6) Spread box beams
- 7) Side-by-side box beams
- 8) Precast double tees
- 9) Prefabricated steel/concrete double tees
- 10) Slab
- 11) Timber slab
- 12) Culverts

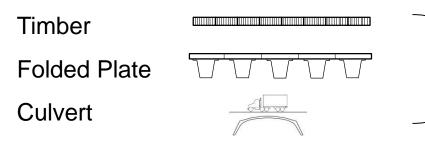
Concept Review

• Focus group meeting (July 2016)

Local agency representatives, engineering consultants, contractors, fabricators

Discussed performance, cost, constructability, durability/maintenance, other issues

- **On-line survey** (advertised in Crossroads Magazine)
- **Questionnaire** distributed to 2017 MBC


About 90 responses

Concepts for Plan Development

Bridge Type	Some advantages
Galvanized Steel	lower weight, small depth for short spans
Spread Box	popular, readily available
Side-by-side Box	useful when small depth required
Bulb tee	efficient for longer spans

Other Competitive Structures

currently available in prefabricated kits

Cost Analysis

• Initial and life cycle cost analysis (LCCA) of superstructure

LCCA

Agency Costs

- Material, personnel, and equipment costs for construction and maintenance
- Cost Events:

Initial construction Routine and detailed inspections Deck patch, overlay, & replacement Beam end repair & replacement Superstructure demolition & replacement

• Operation, maintenance, and repair events based on MDOT practices

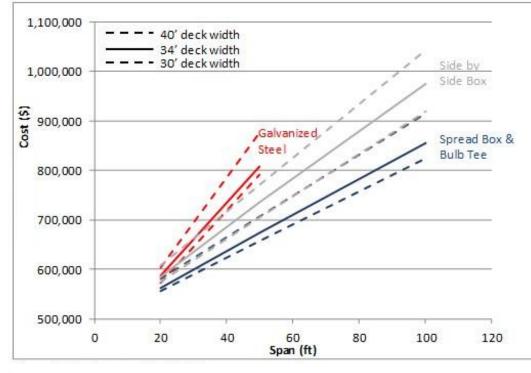
User costs

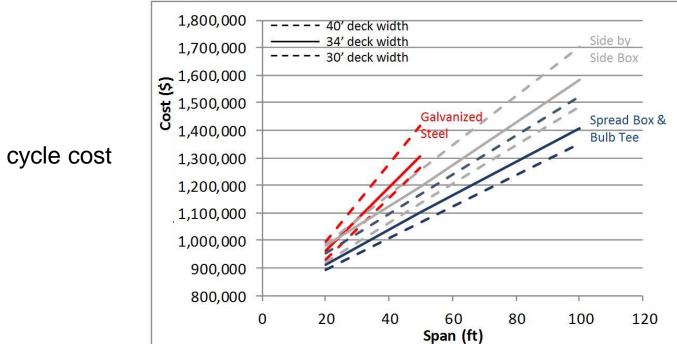
During construction & maintenance, the costs due to increased:

Travel time Vehicle operation Crashes

Life cycle costs

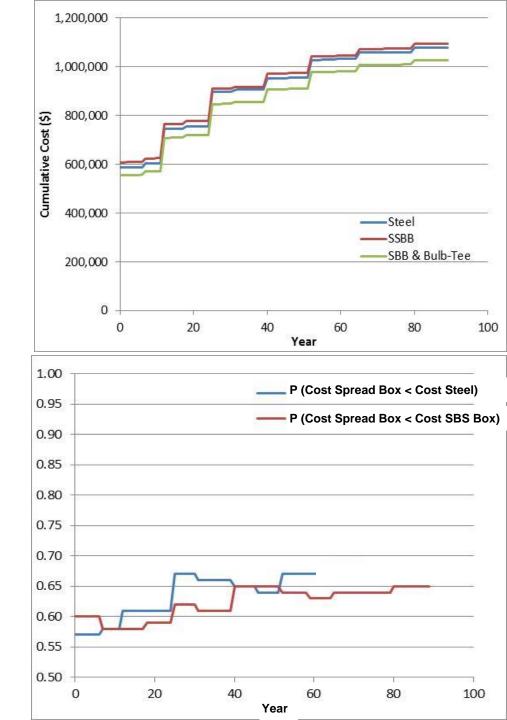
Cumulative yearly costs converted to present dollar value


Probabilistic LCCA


LCCA considering cost uncertainties Costs expressed as random variables Analysis conducted with Monte Carlo Simulation

Example Results

Initial construction cost



Life cycle cost

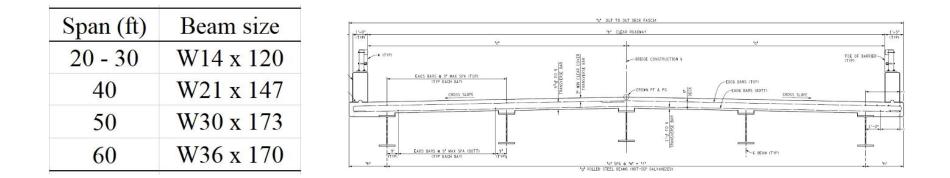
Example Results

Cumulative Cost, 20' Span

Probabilistic Evaluation, 20' Span

Summary of Recommended Designs

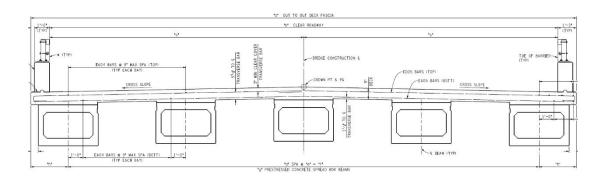
• Balance cost, beam depth, constructability


Deck Width	(2 Lane - Shoulder)	ADT
30'	11' - 4'	≤ 1500 (+ ag. equipment)
34'	11' - 6'	1500 - 2000
40'	12' - 8'	> 2000

Bridge Type	Spans	Skew
Galvanized Steel	20-60'	0 - 30°
Spread Box	20-70'	
Side-by-side Box	20-70'	
Bulb tee	70-110'	

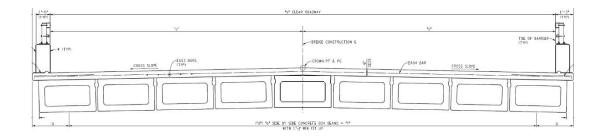
<u>Steel</u>

Span (ft)	# beams x spacing (ft)	Overhang (ft)	Clear width (ft)	Total width (ft)
20 - 60	5 x 6.38	3.5	30	32.5
20 - 60	6 x 6.3	2.5	34	36.5
20 - 60	7 x 6.25	2.5	40	42.5

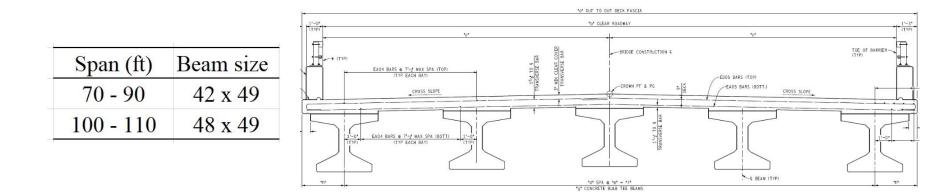


Spread Box

Span (ft)	# beams x spacing (ft)	Overhang (ft)	Clear width (ft)	Total width (ft)
20 - 50	4 x 9.17	2.5	30	32.5
60 - 110	5 x 6.87	2.5	30	32.5
20 - 110	5 x 7.87	2.5	34	36.5
20 - 50	5 x 9.37	2.5	40	42.5
60 - 110	6 x 7.5	2.5	40	42.5


Span (ft)	Beam size
20 - 40	21 x 36
50 - 60	21 x 48
70	27 x 48
80	33 x 48
90 - 100	39 x 48
110	48 x 48

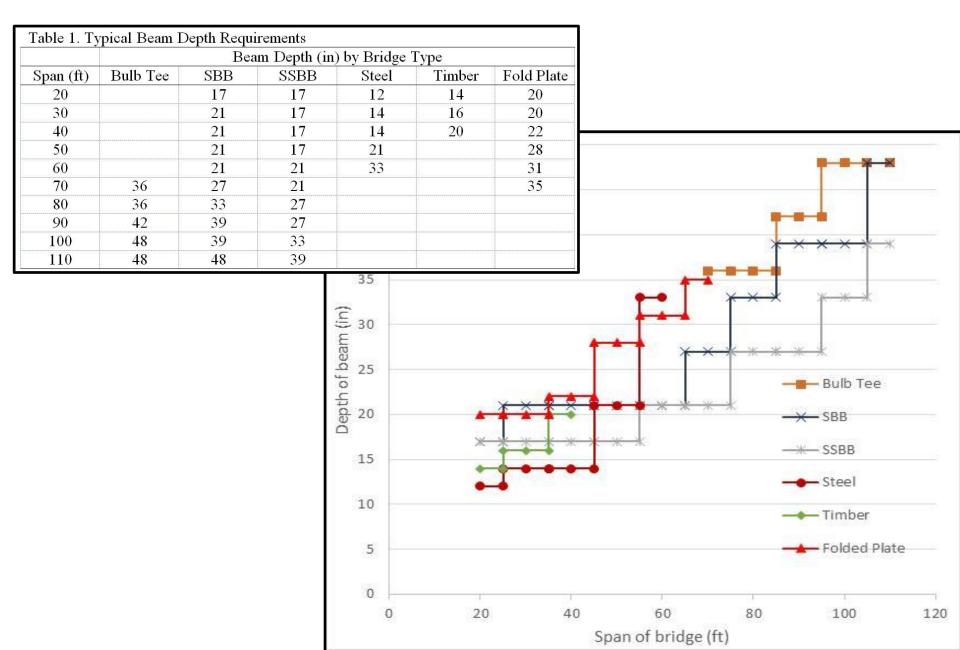
Side By Side Box


	# of beams for clear width			
Span (ft)	30'	34'	40'	
20	10	12	13	
30	10	12	13	
40	10	12	13	
50	10	12	13	
60	8	9	10	
70	8	9	10	
80	8	9	10	
90	8	9	10	
100	8	9	10	
110	8	9	10	

Span (ft)	Beam size
20 - 50	17 x 36
60 - 70	21 x 48
80 - 90	27 x 48
100	33 x 48
110	39 x 48

Bulb Tees

Span (ft)	# beams x spacing (ft)	Overhang (ft)	Clear width (ft)	Total width (ft)
70 - 110	4 x 9.17	2.5	30	32.5
70 - 110	5 x 7.87	2.5	34	36.5
70 - 100	5 x 9.37	2.5	40	42.5
110	5 x 8.87	3.5	40	42.5


Design Guidelines

Summary Document

- Summary of design considerations
- Discussion of bridge types & pros/cons of selections
- Initial span/depth selection charts
- Initial and life cycle cost estimates
- Discussion of design assumptions/limitations on plan templates
- Example design

Guide span-depth selections

Guide template use instructions

Summarizes:

- Sheet contents
- Variable-defined items
- Inputs required
- Selections required
- Explanatory notes

Sheet 1: Deck Plan

Contains: deck plan, haunch detail

<u>Variable items</u>: span length (L), out-to-out bridge width (a), angle of crossing, deck reinforcement, structural slab thickness (T), fascia depth (F), haunch detail

<u>Select</u>: haunch detail (for concrete or steel beams), angle of crossing case

<u>Notes</u>: The left side of the deck plan applies to angles of crossing from 70-90°, while the right side applies to angles of crossing $60-70^\circ$. Deck plan should be redrawn to appropriately match the required angle of crossing. See section sheets for out-to-out width dimension (a).

Plan Sheet Templates

- 28 sheets for steel, box beam, and bulb tee bridges
- Templates in Mircostation and Autocad formats
- Superstructure templates:

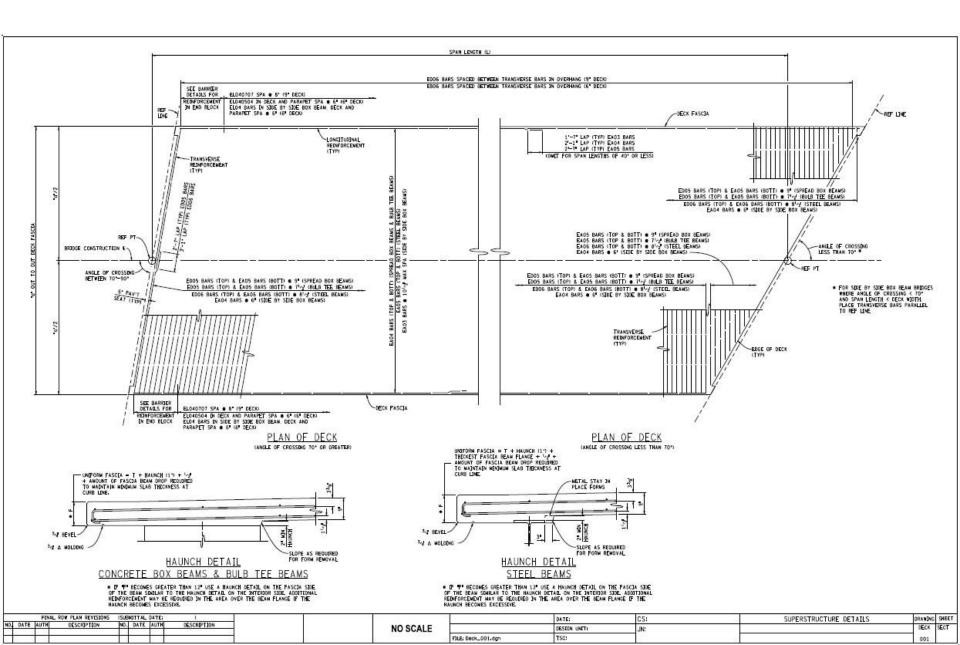
Deck plan	Shear reinforcement
Approach slab	Beam sections
Abutment back wall	Strand layout
End wall	Diaphragms
Barrier	Camber diagram
Bridge section	Bearing pads
Erection diagram	Expansion joints

• Selection tables for girder sizes, strands, stirrups, bearings, etc.

Plan Sheet Templates

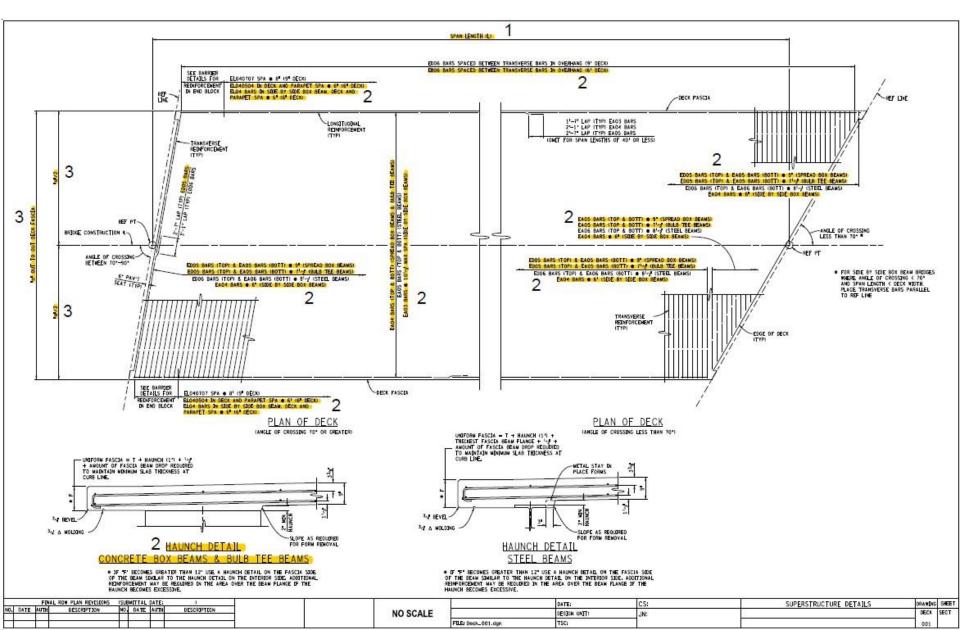
Sheet Number:	Bridge Type				
Sheet Name	Steel	Spread Box	SBS Box	Bulb Tee	
Deck plan & haunch detail	1	1	1	1	
Abutment back wall	2	2	n/a	2	
Approach slab	3	3	3	3	
Barrier & end walls	4	4	4	4	
Bridge section	8	5	6	7	
Erection diagram	21	9	13	18	
Shear reinforcement	22	10	14	19	
Beam sections & strands*	24	11, 12	15,16	19	
Diaphragms	23	n/a	n/a	20	
Bearings	27	25	25	26	
Expansion joint	28	28	28	28	

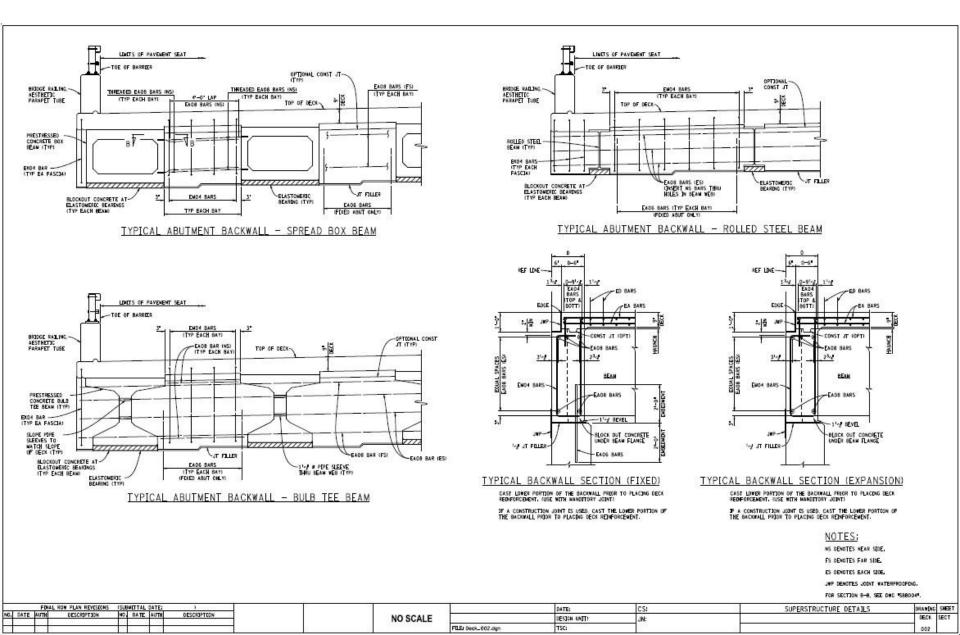
*For steel, a camber diagram is given in place of beam section & strand diagram.



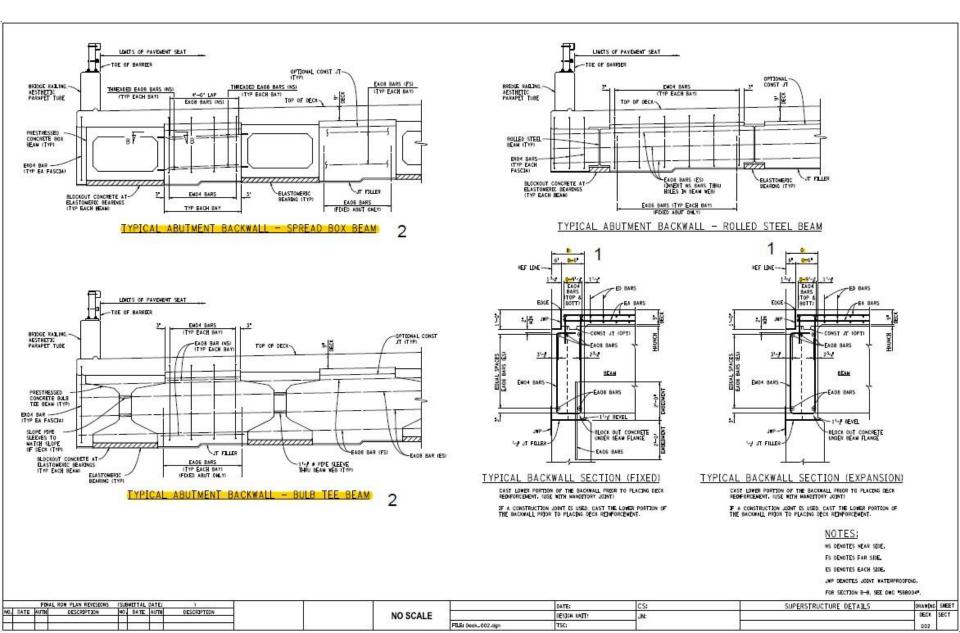
Example: Steel Bridge Sheets

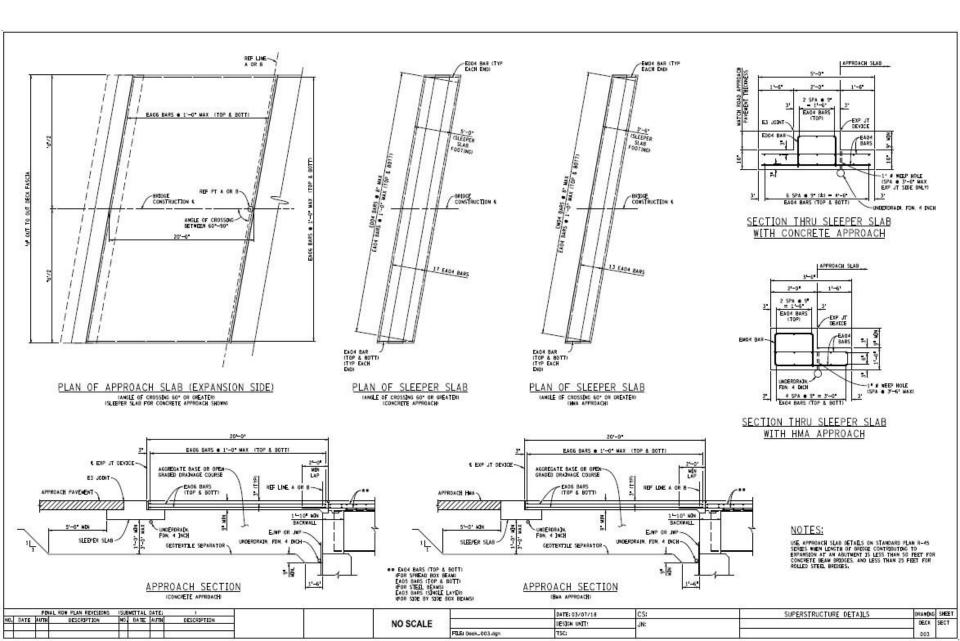
Sheets needed:


- 1: Deck plan
- 2: Abutment back wall
- 3: Approach slab
- 4: Barrier and end wall
- 8: Bridge section
- 21: Erection diagram
- 22: Shear studs
- 23: Diaphragms
- 24: Camber diagram
- 27: Bearing assembly
- 28: Expansion joints


Sheet 1: Deck Plan

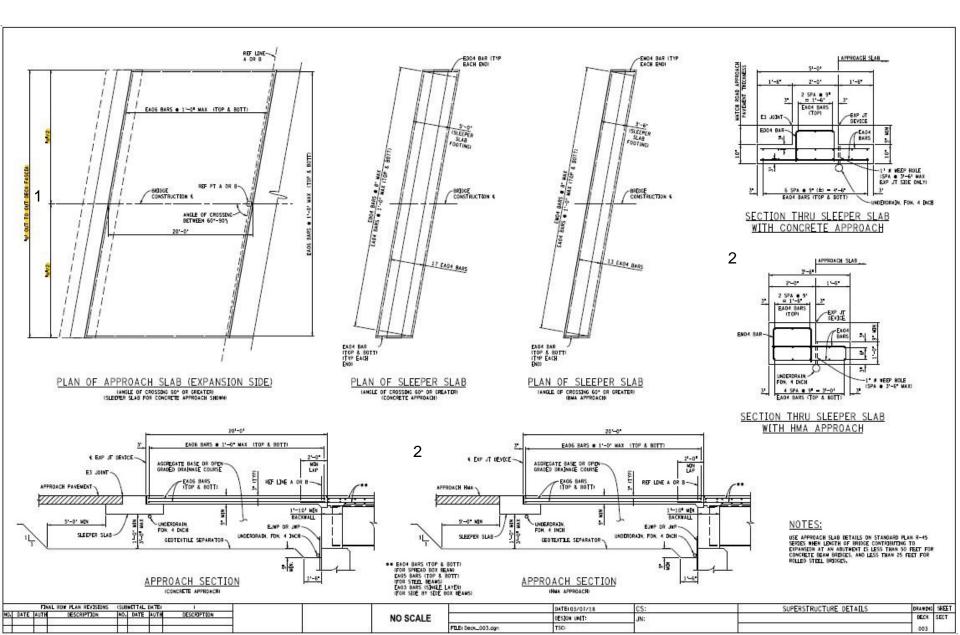
Sheet 1: Deck Plan

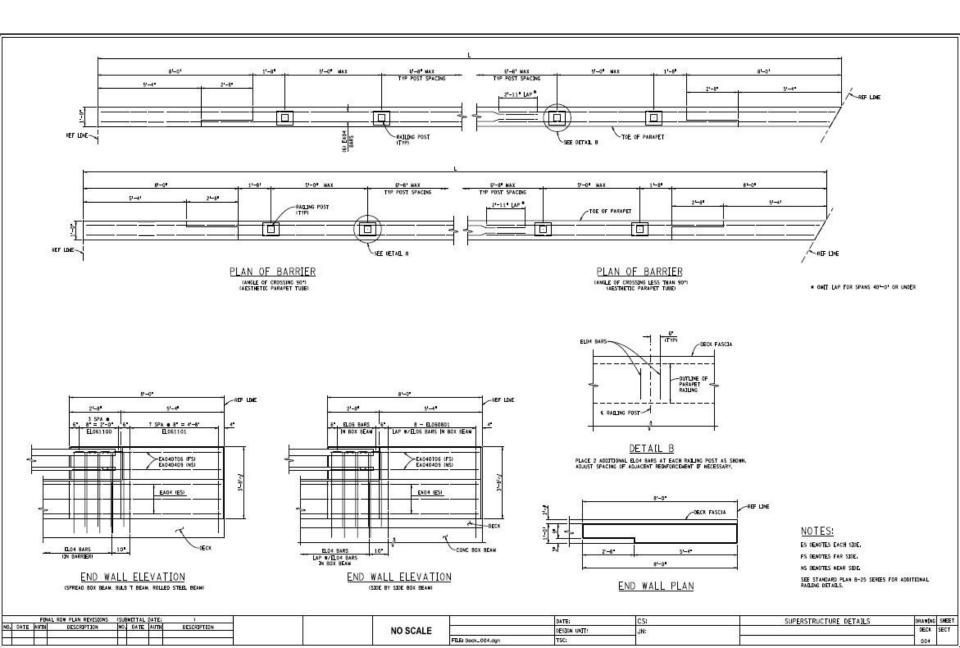

- 1) Insert: span
- 2) Delete: rebar notes, haunch detail
- 3) Insert width & choose skew case



Sheet 2: Abutment back wall

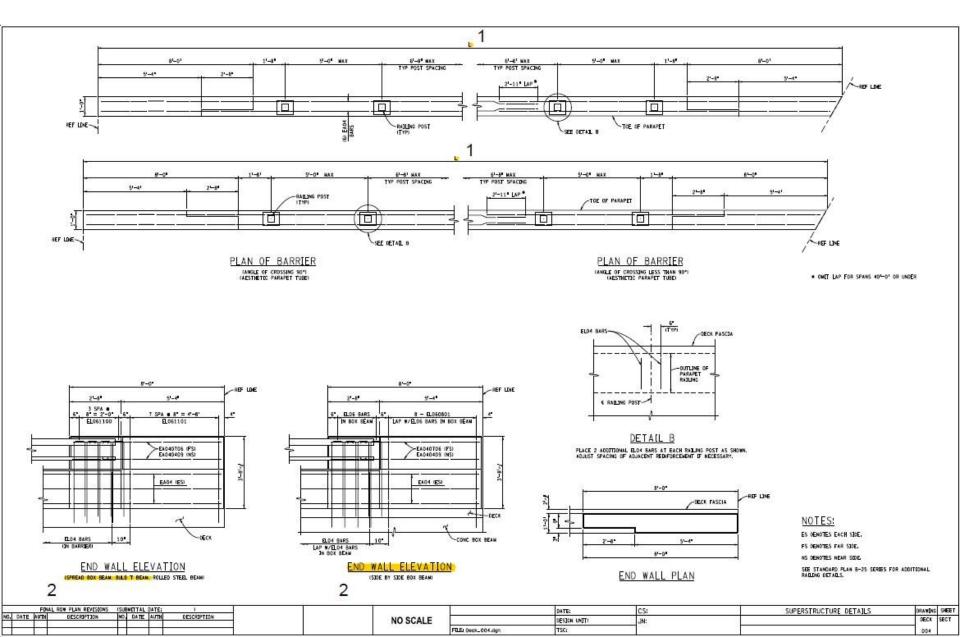
- 1) Insert: back wall width (D) [max(1'-8", f(bearing dim.))]
- 2) Delete: back wall details




Sheet 3: Approach Slab

1) Insert: width

2) Select approach type (concrete, HMA, R-45)

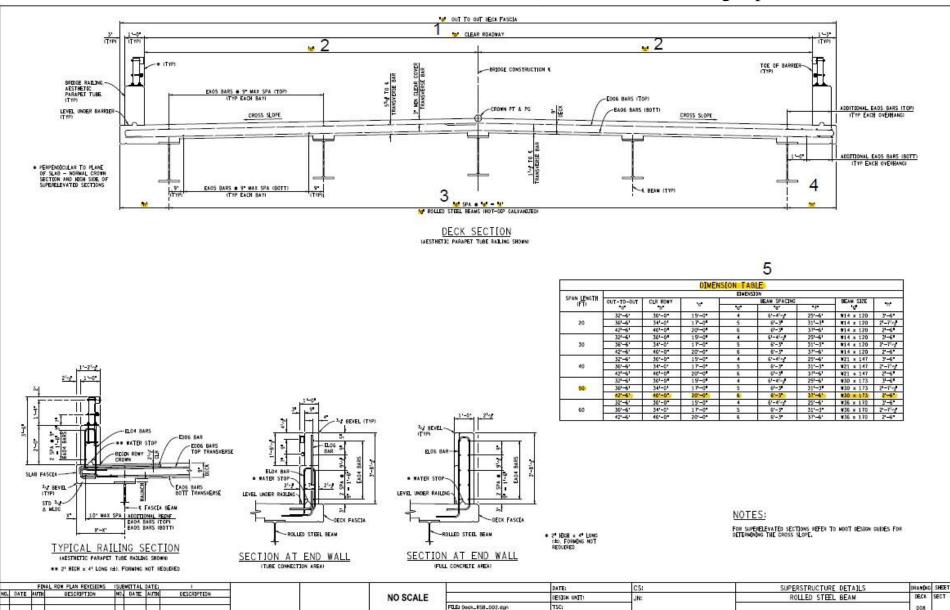

Sheet 4: Barrier and end wall


Sheet 4: Barrier and end wall

1) Insert: span

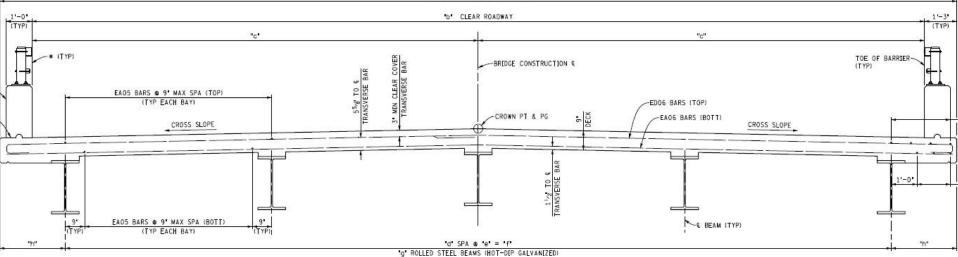
2) Delete: note and end wall elevation

Sheet 8: Bridge section

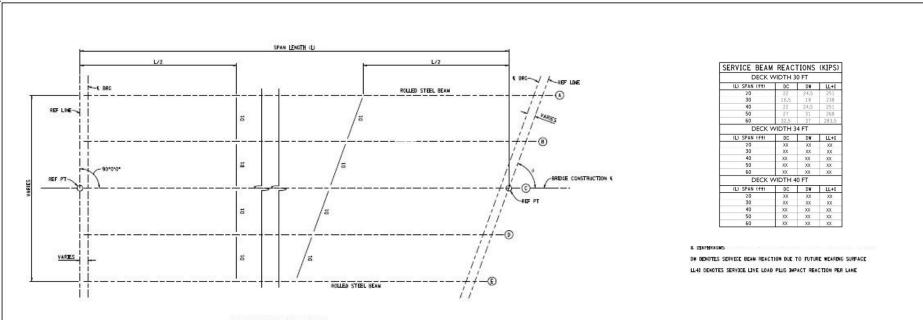

Sheet 8: Bridge section

1, 2) Insert: bridge width parameters (a, b, c)

3) Insert: beam spacing parameters (d, e, f)


4) Insert: overhang (h)

5) Select on table: bridge span and width



			DIMEN	SION TAB	LE			
COAN LENGTH				DIMENSI	ION			
SPAN LENGTH (FT)	OUT-TO-OUT	CLR RDWY	"С"		BEAM SPACING		BEAM SIZE	"h"
M 17	"a"	"b"	U	"d"	"e"	"f"	"g"	11
	32'-6"	30'-0"	15'-0"	4	6'-4 ¹ /2"	25'-6"	W14 × 120	3'-6"
20	36'-6"	34'-0"	17'-0"	5	6'-3"	31'-3"	W14 × 120	2'-71/2"
	42'-6"	40'-0"	20'-0"	6	6'-3"	37'-6"	W14 × 120	2'-6"
	32'-6"	30'-0"	15'-0"	4	6'-4 ¹ /2"	25'-6"	W14 × 120	3'-6"
30	36'-6"	34'-0"	17'-0"	5	6'-3"	31'-3"	W14 × 120	2'-7'/2"
	42'-6"	40'-0"	20'-0"	6	6'-3"	37'-6"	W14 × 120	2'-6"
	32'-6"	30'-0"	15'-0"	4	6'-4 ¹ /2"	25'-6"	W21 x 147	3'-6"
40	36'-6"	34'-0"	17'-0"	5	6'-3"	31'-3"	W21 x 147	2'-7'/2"
	42'-6"	40'-0"	20'-0"	6	6'-3"	37'-6"	W21 x 147	2'-6"
	32'-6"	30'-0"	15'-0"	4	6'-4 ¹ /2"	25'-6"	W30 x 173	3'-6"
50	36'-6"	34'-0"	17'-0"	5	6'-3"	31'-3"	W30 x 173	2'-7'/2"
	42'-6"	40'-0"	20'-0"	6	6'-3"	37'-6"	W30 x 173	2'-6"
	32'-6"	30'-0"	15'-0"	4	6'-4 ¹ /2"	25'-6"	W36 x 170	3'-6"
60	36'-6"	34'-0"	17'-0"	5	6'-3"	31'-3"	W36 × 170	2'-7'/2"
	42'-6"	40'-0"	20'-0"	6	6'-3"	37'-6"	W36 x 170	2'-6"

Sheet 8: Beam size & spacing selection table

Sheet 21: Erection diagram

ERECTION DIAGRAM

NOTES: THE DESIGN OF

THE DESIGN OF THESE STRUCTURES IS BASED ON 1.2 THES THE CHRENT ALENTO LIFE BRIDE DESIGN SEPERATION HER H-3 LOAD WITH THE EXCEPTION HAT THE DESIGN TANDEM PORTION OF THE H.-35 LOAD DEFINITIONS SHALL BE REPLACED BY A SINGLE GO OF ALLE LOAD DEFORMER APPLICATION OF THE 1.2 FACTOR. THE RESILTING LOAD SI DESIGNATED H_4735 MOB. LIVE LOAD PLUS DYNAMEC LOAD ALLOWANCE DEFLECTION DOES NOT EXCEED 17400 OF SYMAL LEWITH.

SHEAR DEVELOPERS SHALL BE MY DEAWETER STUDS,

ALL STRUCTURAL STEEL SHALL BE COATED ACCORDING TO SUBSECTION 716 OF THE STANDARD SPECIFICATIONS AND SHALL BE HOT-DIPPED GALVANDZED.

STRUCTURAL STEEL SHALL CONFORM TO #ASHTO M270, GRADE 50, OR AASHTO M270, GRADE 50%. AASHTO M270, GRADE 36, STEEL MAY BE USED DN LIDU OF THESE STEELS FOR THE DIATHRANGS (ECEDF) COMMENTION PLATES).

ALL HOLES SHALL BE """" FOR """ HIGH-STRENGTH BOLTS.

FIELD CONNECTIONS SHALL BE BOLTED WITH 3-2 HIGH-STRENGTH BOLTS (EXCEPT AS NOTED).

THE QUANTIT	* STRUCTURAL STEEL DIC	LUDES:
STEEL _		L85
BRONZE _		LBS
TOTAL		LBS

	ROW PLAN REVESTORS ISUBMETTAL DATE:					DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRANDIG	SHEET
NO. DATE AUTH	DESCRIPTION NO. DATE AUTH	DESCRIPTION	-	NO SCALE		DESIGN UNIT:	JN:	ROLLED STEEL BEAM	STEEL	SECT
			1 1		FILE: steel_001.dgn	TSC:	11.000		001	

Sheet 21: Erection diagram

- 1, 2) Insert: bridge length (L; L/2)
- 3) Insert: angle of crossing (θ)
- 4) Read reactions per bridge type

DC DW LL+I

XX XX

DC DW LL+I

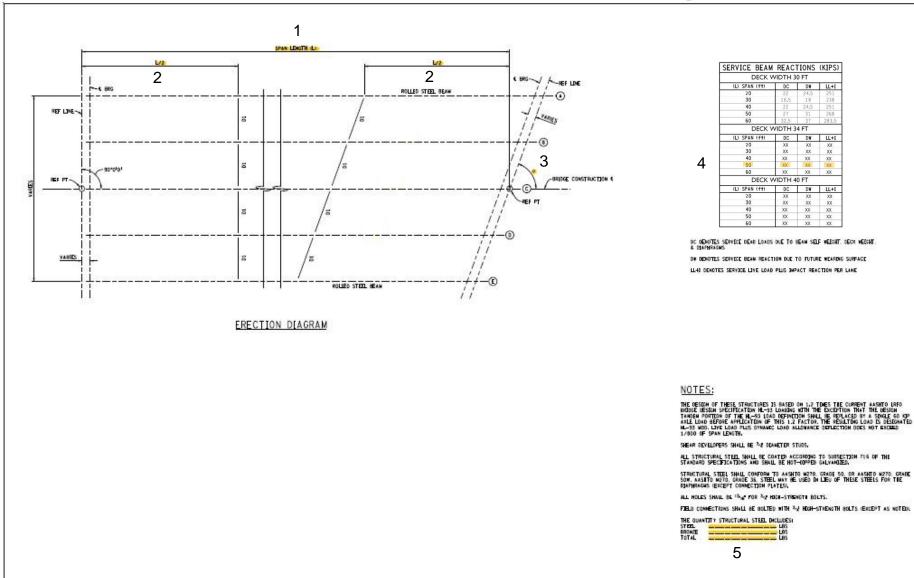
XX XX

XX

XX

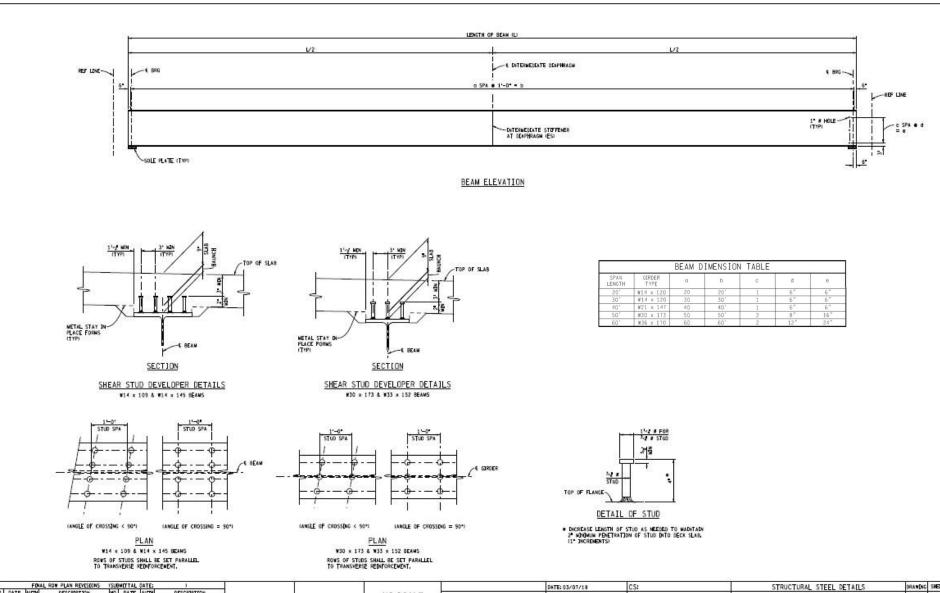
ΧХ XX XX

XX XX ΧХ


ΧХ XX YY

XX XX XX

ХХ XX XX


XX XX XX XX

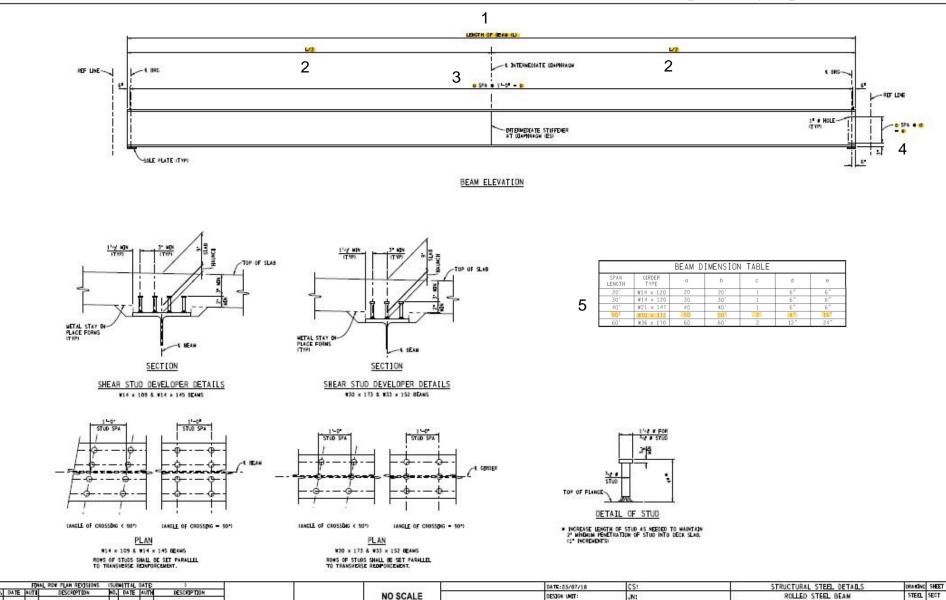
5) Enter material quantities

1			SUMMITTAL		- E	() ()	8	en casa yan menazi	i i	DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRAKING	C SHEET
NO, DA	TE AUTI	DESCRIPTION	NO, DATE	AUTH	DESCRIPTION			NO SCALE	5	DESIGN UNIT:	JN:	ROLLED STEEL BEAM	STEEL	SECT
	22 34		2 3			8		A STATE OF A STATE A	FILE: steel_001,dgn	TSC:			001	

Sheet 22: Shear studs

2003			ISUBMETT			1			DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRANDIG	SHEET
NC.	DATE AUTH	DESCRIPTION	NO. DA		DESCRIPTION	-	NO SCALE		DESIGN UNIT:	JN:	ROLLED STEEL BEAM	STEEL	SECT
632	1.3	3	32.4	8 6	8		1.29172338382954 	FILE: sheel_002.dgn	TSC:	8.0028		002	00262

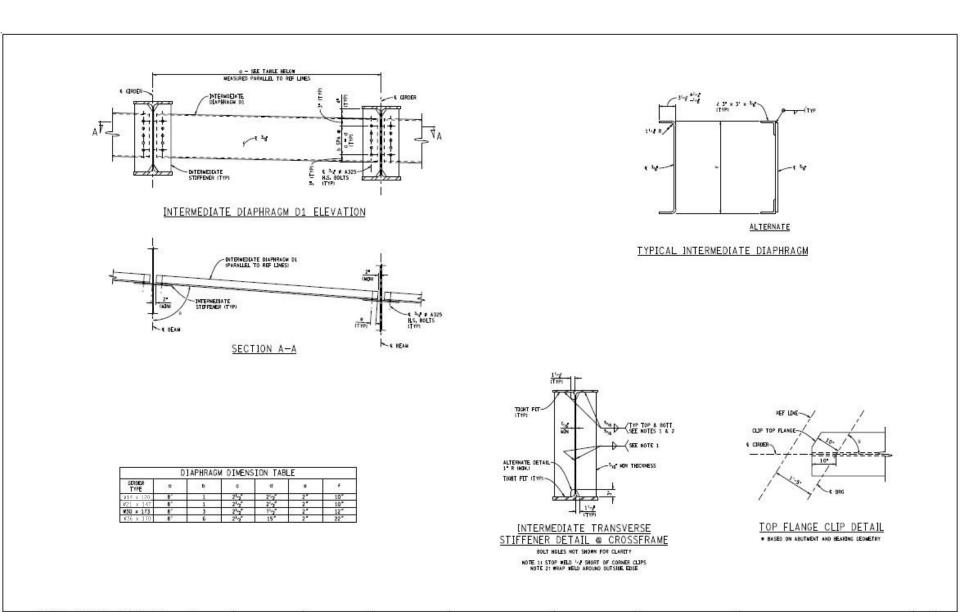
Sheet 22: Shear studs


1, 2) Insert: bridge length (L = b)

3) Insert: # of studs (a) & length (b)

4) Insert: #of holes (c); spacing (d); tot. dist. (e)

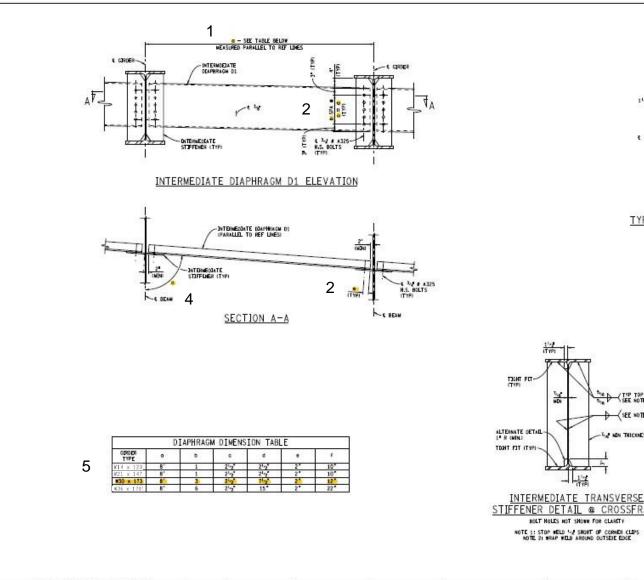
002

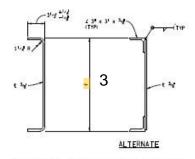

5) Read dimensions per bridge span

FILE steel_002,dgn

TSC:

Sheet 23: Diaphragms

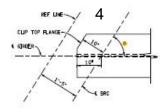

Sec.	FD	NAL ROW PLAN REVESTORS	ISUBWETTAL D						DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRANDIG	SHEET
NO. D	ATE AUTH	DESCRIPTION	NO. DATE	AUTH	DESCRIPTION		NO SCALE		DESIGN UNIT:	JN:	ROLLED STEEL BEAM		SECT
							1.110.00.000.000.000.000.000.000.000.00	FILE: s-teel_003.dgn	TSC;			003	


Sheet 23: Diaphragms

- 1) Insert: beam spacing (a)
- Insert: #of holes (b); 2)
- 3) Insert: diaphragm depth (f)
- 4) Insert: angle of crossing (θ)

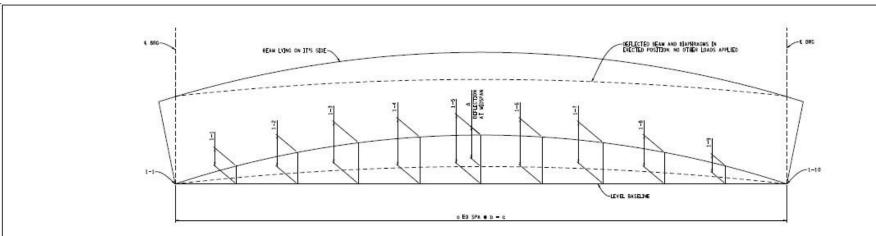
spacing (c, e); tot. dist. (d)

5) Read diaphragm dim. per beam type


TYPICAL INTERMEDIATE DIAPHRAGM

SEE NOTES 1 & 2

SEE NOTE


AND THICKNESS

@ CROSSERAME

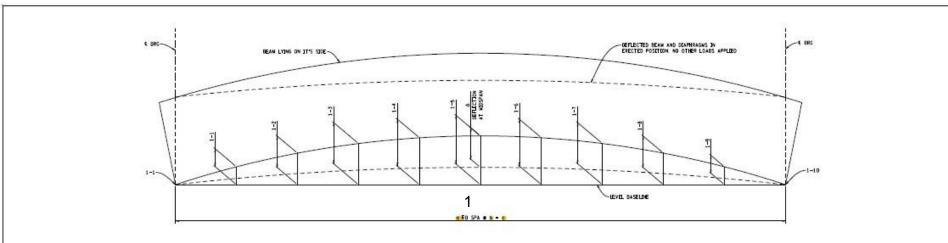
TOP FLANGE CLIP DETAIL · BASED ON ABUTWENT AND BEARDIC GEOWETRY

-				SUBATTAL C						DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRAWING	
MC.	DATE A	WTH	DESCRIPTION	HO. DATE	AUTH	OESCROPTION		NO SCALE		DESCON UNIT:	JN:	ROLLED STEEL BEAM	STEEL	SECT
	- E	1		8	1			3	FILE steel.003.dgn	TSC;	15643) A		003	

CAMBER DIAGRAM

	ORD[NATE [JIMENS.	IUN TABL	E
SPAN	COROCH THE	a	ь	c
30'	¥14 x 120	X	X	1
40'	W21 x 147	X	X	x
50'	#30 x 173	X	— X ≤ ⊙	I
60'	W36 x 170	x	x	I

	a			THEO	RETIC	AL CAN	WBER 1	ABLE				
1000	SPAN		1000	1000	0.000	CANBER O	SOINA TES	10000	6.122	10110-003	10.00	ata 196
IC+N	LENGTH	1-0	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
¥14 x 120	30'	x	X	X	x	X	X	X	X	x	x	X
W21 x 147	40'	x	X	X	x	X	X	X	X	x	X	X
#30 x 173	50'	x	X	X	x	X	X	X	X	I	X	X
W36 × 170	60'	X	X	X	x	X	X	X	X	X	X	X


NOTES:

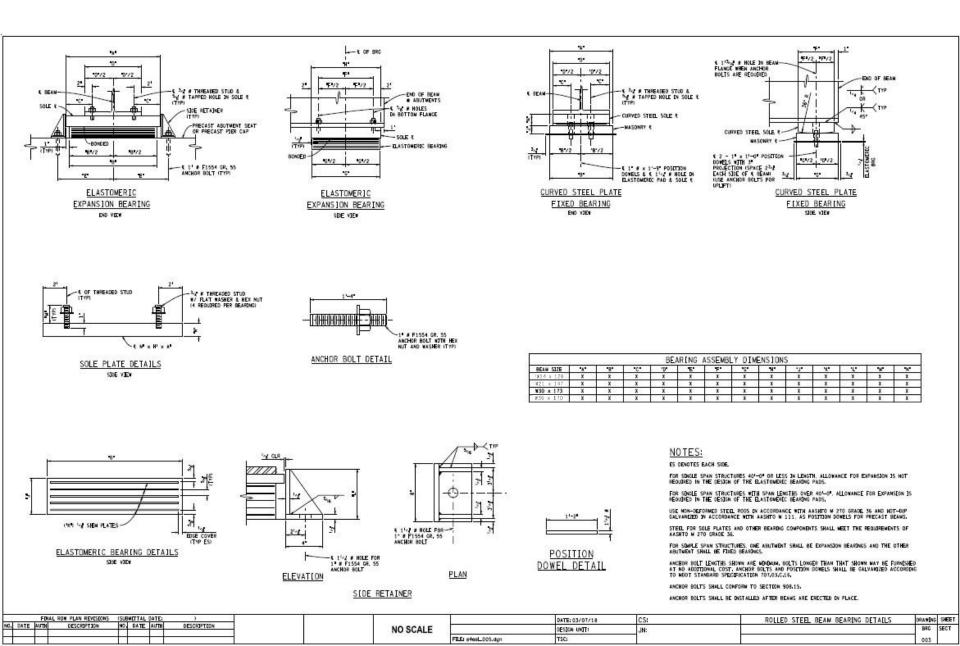
THE BEAMS SHALL HAVE A PARABOLIC CAMBER WITH ORDINATES AS SHOWN ON THE CAMBER DAGRAM. HEATING IS TO BE USED, OF NECESSARY. TO PROVIDE THE CAMBER REMAIN A TOLEDANCE OF $^{+}/^{+}$ AT THE CENTER. THE CAMBER SHOWN IS TO BE MEASURED WITH THE BEAM LYING ON ITS SDE.

Receiver			ISUBMETTAL				C			DATE: 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRANDIG	SHEET
NO. DA	TE AUTH	DESCRIPTION	NO. DATE	AUTH	DESCRIPTION	-		NO SCALE		DESIGN UNIT:	JN:	ROLLED STEEL BEAM	STEEL	SECT
100		2			0	1	0 (3	1220000000000000	FILE: sHeel_004.dgn	TSC:	377 0	0.4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00	004	

Sheet 24: Camber diagram

- 1) Insert: number of ordinates (a), spacing (b), length (c)
- 2) Read ordinate location per span
- 3) Read camber values per span

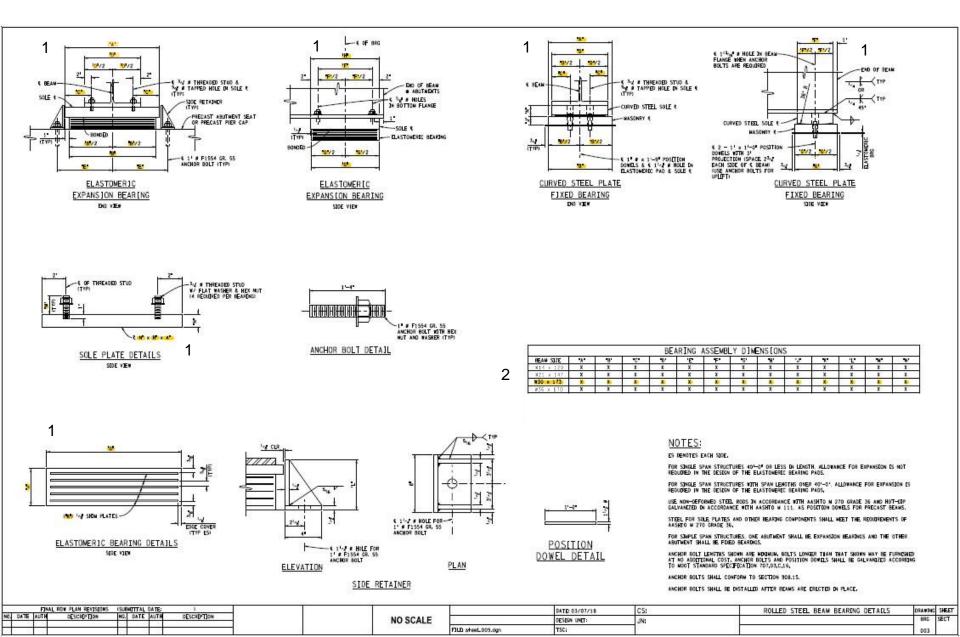
CAMBER DIAGRAM

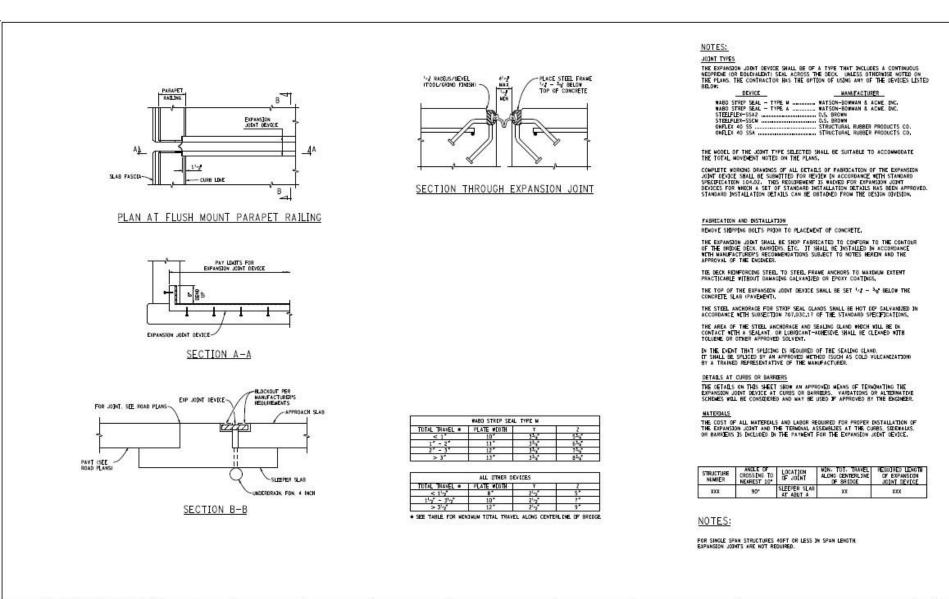

	ORDINATE	DIMENS:	ION TABL	E
SPAN LENGTH	CONDER THRE	4		° .
30'	¥14 x 120	x	x	8 4
40'	W21 x 147	x	X	5 3
501	M30 x 173	x	X	S (1
60'	W36 x 170	x	x	1

				THEOR	RETIC	AL CAN	BER '	TABLE				
	SPAR	£				CANIER C	ROMATES					
EEAM	TORLE .	1-0	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
W14 x 120	30"	I	x	X	x	x	X	T	x	X	1	x
W21 x 147	40"	I	x	x	x	X	X	x	x	X	I	x
W30 × 173	50"	I	X	X	x	X	X	T.	X	X	1	X
W36 x 170	60'	I	x	x	x	x	X	I	x	X	1	x

NOTES:

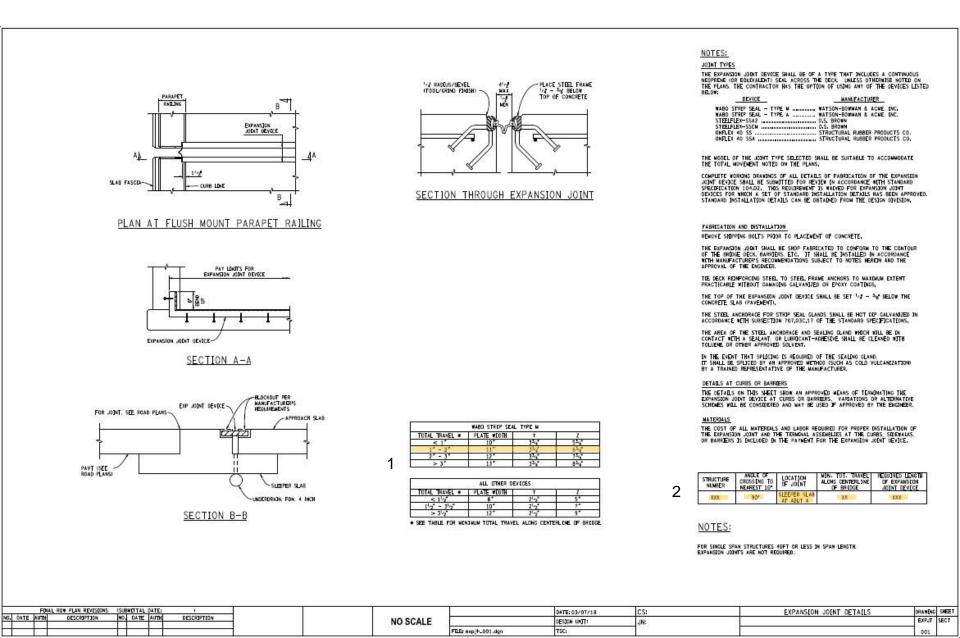
THE BEAMS SHALL HAVE A PARABOLIC CAMERN WITH ONDDATES AS SHOWN ON THE CAMERN GLAGRAM, HEATING IS TO BE USED, IT MECESSARY. TO PROVIDE THE CAMERN GLAGRAM A TOLERANCE OF $^+/^{\prime}$ AT THE CENTER. THE CAMERN SHOWN IS TO BE MEASURED WITH THE DEAM LYDNG ON JIS SIDE.


			USUBATITAL DATE AL				1 3	DATE 03/07/18	CS:	STRUCTURAL STEEL DETAILS	DRAWING	SHEET	
NG.	DATE AUTH	DESCRIPTION	HD. DATE AL	TH DESCROYTOW			NO SCALE	Barrana and a state of the second	DESDON UNET:	JN:	ROLLED STEEL BEAM	STEEL	SECT
	3	3	100	3	1	0	FILE steel.004.dgn	TSC:	Contro (g	1010/1010/00101010101010101010101010101	004	-	



Sheet 27: Bearing assembly

1) Insert: bearing dimensions (A-N)


2) Read dimensions from table per girder type

1000		AL ROW PLAN REVESCONS	SUBNETTAL							DATE: 03/07/18	CS:	EXPANSION JOINT DETAILS	DRANDA	SHEET
NO. DAT	E AUTH	DESCRIPTION	NO. DATE	AUTH	DESCRIPTION			NO SCALE		DESIGN UNIT:	JN:		EXPJT	SECT
									FILE: exp]+_001.dgn	TSC;			005	1 1

Select joint dimensions Enter bridge information

Wayne State University

Alfred Benesch & Co.

