HOT-DIP GALVANIZED STEEL BRIDGES

RICH COLLINS SALES & MARKETING MANAGER , V&S GALVANIZING

VICE CHAIR, MARKET DEVELOPMENT, AMERICAN GALVANIZERS ASSOCIATION

MICHIGAN BRIDGE CONFERENCE MARCH 20, 2018

V&S GALVANIZING

AMERICAN GALVANIZERS ASSOCIATION

- **T** Non-profit trade association established in 1933
 - **T** Dedicated to serving as a unified voice and expertise in the after fabrication hot-dip galvanizing industry
- Provides technical support on innovative application and technological developments in hot-dip galvanizing for corrosion protection
 - **T** Free assistance for North American specifiers
 - **T** Resource for our members

GALVANIZED BRIDGE HISTORY/MARKET

T Stearns Bayou Bridge – 1966

- **T** First (known) galvanized superstructure installation in the US
- T Approximately 5% of steel bridges are galvanized; primarily in short span (<60 ft)</p>
 - **T** Current capacity allows up to 92 ft
- In last decade, specification of galvanized steel in bridges is growing
 - **T** Also growth in galvanized reinforcing steel (rebar)

OTTAWA COUNTY, MI • 1966

۰

Stearns Bayou Bridge

Ottawa County, MI

Galvanized in 1966

GALVANIZE IT!

HOT-DIP GALVANIZING PROCESS

Surface Preparation

CORROSION PROTECTION

Three levels of protection

- **T** Barrier isolation from environment
- Cathodic sacrificial action
- **T** Zinc Patina
 - Natural weathering of zinc surface during wet/dry cycles
 - Zinc byproducts build on surface additional passive barrier slows corrosion rate

- T Abras
 - Abrasion resistance
 - Metallurgically-bonded layers
 - Uniform Protection
 - Corner/edge thickness
 - Complete coverage
 - Interior/threads

CASTLETON BRIDGE

LONGEVITY

- Atmospheric Most common
 - **T** Zinc Coating Life Predictor (ZCLP)
 - **1** 5 categories of environments
 - T Corrosion Rate Based On
 - **T**emperature
 - **T** Relative humidity
 - **T** Rainfall
 - **T** Sheltering condition
 - Airborne salinity
 - Sulfur dioxide concentration
- T Fresh Water
 - **T** Dissolved gasses, flow rate, other ions
 - **T** Hard water is less corrosive than soft

👕 Sea Water

- T Dissolved salts passive compounds
- Lower temp = less corrosion
- Soils varying properties
 - 0.2 μm/year to 20 μm/year
 - **°** Changes in short distance
 - **T** Primary Factors
 - **T** Chlorides
 - T pH
 - **T** Moisture content
 - **T** Secondary
 - T Resistivity, Temp, Aeration

LONGEVITY

BRIDGES OF STARK COUNTY

AVAILABILITY & VERSATILITY

- Factory-controlled process located across North America
 - Environmental factors do no affect turnaround time
 - **1** No Curing
- Abundant Materials
 - **T** Zinc/Iron both readily available
 - **T** Infinitely renewable resources
- Efficiency & Safety
 - **T** More with Less
 - T Easily retrofitted
 - Seismic Advantage
- Stockable Inventory

COLUMBUS, OH • 2003 GALVANIZE IT!

AESTHETICS

- Modern, Natural Appearance
 - Blends with surroundings
 - Uniform, matte gray
 - Design freedom
 - Duplex Coatings
 - Paint/Powder coating galvanized steel
 - Synergistic Effect
 - **T** Two coatings work in synergy
 - Extends topcoat maintenance cycle1.5 to 2.0 times

Bergen County Bridge

WHY HDG?

Fairlawn/Patterson, NJ • 2009

SUSTAINABILITY: GALVANIZING IS GREEN

- Tinc is natural, abundant, essential to life
- Tinc and steel are 100% recyclable
 - Multi-cycled indefinitely without loss of any properties
 - Steel most recycled material in world
 - 30% of world zinc supply from recycled sources
- **T** LCA in 2008
- **T** EPD and HPD in 2016

KNOX COUNTY BRIDGE REHAB

WHY HDG?

MICHIGAN M-102 BRIDGE RAIL

DETROIT, MI • 2007

SUSTAINABILITY: ECONOMIC ADVANTAGES

- **T** Initial cost benefits
 - **T** Overall material cost, as well as time savings
- **T** Life-cycle cost savings
 - **Total cost of project throughout its life**
 - **T** Includes maintenance costs and time value of money
 - **T** HDG often initial cost IS life-cycle cost
- Life-cycle cost calculation automated online at lccc.galvanizeit.org

BOGGS ROAD BRIDGE

2014

COST CASE STUDY

T Data Sources:

- Paint 2016 KTA Tator paper (newest published)
 - Nationwide survey of the paint industry
 - **T** Presented at NACE 2017
- Galvanizing 2016 AGA
 Industry Survey
 - **1** Using US average
 - **T** Can input customized cost

- Project Parameters:
 - **T**ypical mix of size/shapes
 - **1** 50,000 ft² project
 - **1** 75 year design life
 - Moderately industrial environment (C3)
 - **1** 3% inflation, 2% interest

INITIAL COST

Coating System	\$/ft ²	Total
Hot-Dip Galvanizing	\$1.76	\$88,000
Ероху/Ероху	\$2.92	\$146,150
Epoxy/Polyurethane	\$3.14	\$157,050
Inorganic Zinc/Epoxy	\$3.17	\$158,650
Inorganic Zinc/Epoxy/Polyurethane	\$4.53	\$226,300
Galvanizing/Epoxy/Polyurethane	\$5.28	\$263,950
Metallizing	\$8.37	\$418,550

TOTAL LIFE-CYCLE COST (75 YEARS)

Coating System	\$/ft ²	Total
Hot-Dip Galvanizing	\$4.17	\$208,500
Galvanizing/Epoxy/Polyurethane	\$22.84	\$1,142,000
Inorganic Zinc/Epoxy	\$39.92	\$1,996,000
Inorganic Zinc/Epoxy/Polyurethane	\$41.53	\$2,076,500
Ероху/Ероху	\$42.88	\$2,144,000
Epoxy/Polyurethane	\$57.73	\$2,886,500
Metallizing	\$62.80	\$3,140,000

HDG BRIDGE SPECIFICATION & DESIGN

Galvanizelt!

ASTM SPECIFICATIONS

- ASTM A123 iron and steel products (general)
 - Minimum coating thickness
 - **T** Finish
 - **1** Adherence
- **ASTM A153** hardware
 - Centrifuged/spun after galvanizing
 - **T** Minimum coating thickness
 - **T** Finish & Adherence

*** ASTM A767** – rebar

- Finish no bare spots, free from sharp spikes/tears
- Bend diameters
- Minimum coating thickness

Standards Worldwide

SUPPORTING SPECIFICATIONS

- Pre-galvanizing specs (design)
 - ASTM A143 Safeguarding against embrittlement
 - ASTM A384 Minimizing warpage & distortion
 - *** ASTM A385** Practices for highquality coatings
 - ASTM A1068 Life-cycle cost analysis of steel corrosion protection

- **T** Post-galvanizing specs
 - STM A780 Touch-up and repair of galvanized products
 - ASTM D6386 Surface preparation for painting over galvanizing
 - ASTM D7803 Surface preparation for powder coating over galvanizing

DESIGN CONSIDERATIONS

- **T** Communication is key
 - **T** AGA Design Guide
- Steel Selection
- Process Temperature
 - **T** Dissimilar Thickness
- Venting & Drainage
- Welding
- **T** Size Limitations
- Material Handling
- Marking/Masking
- **T** Connection Concerns

BRIDGE SIZE CONSIDERATIONS

- Galvanizing limited by the size of the kettle
 - **T** Average in North America 40 feet
 - T Many 50-60 feet
- Modular Design
 - T Design in modular or sub-units to fit
 - Connect after galvanizing
 - **T** Bolting, Welding
- **T** Progressive Dipping
 - **°** Coat the steel in two passes
 - Communication is essential

- Tandem Coating: Metallizing & HDG
 - **T** Used for large or complex structures
 - To coat the middle of progressively dipped piece
 - Both coatings comprised of zinc no dissimilar metals, similar appearance

BRIDGE DESIGN CONSIDERATIONS: STEEL SELECTION

- Steel Selection
 - Silicon & Phosphorous: two trace elements are most important
 - **T** Guidelines in steel selection
 - Level of carbon less than 0.25%, phosphorous less than 0.04%, manganese less than 1.35% are beneficial
 - Silicon level less than 0.04% or between 0.15%-0.22% are desirable

Coating Thickness

- Large, heavy girders are more susceptible to producing thicker coatings
- Longer bath times = thicker coating
- Bridge Specification: Max Silicon range at 0.40% = highly reactive steels

BRIDGE GIRDER DESIGN CONSIDERATIONS

T Effective Girder Design for HDG

- **T** Flange-to-web thickness: 3 to 1 maximum
- **T** Air cool, not quenched
- Continuous welding to prevent weld fracture from stress or trapped liquids expanding
- Cambered beams
 - Process temps can accentuate or relieve internal stresses
 - **T** Lay down on strong axis with support
- Stiffeners should be cropped
- Minimize immersion time
- **T** Lift at quarter points to distribute weight

CAUSES OF WARPAGE & DISTORTION

- Heat of process can relieve stresses
 - Can lead to distortion and warping of parts/assemblies

- Avoid designing assemblies with susceptibility
 - Asymmetrical design
 - **T** Unequal thickness in assemblies
 - Unequal thickness at joints
 - T Excessive welding
 - **1** Overlapping joints
 - Progressive dipping

BEST PRACTICES TO AVOID WARPAGE & DISTORTION

- Thermal Treatment per ASTM A143
- Use Temporary Bracing
 - Thin-walled items
 - **T** Asymmetrical designs
- Use Bolted Connections or Weld After HDG
- Optimize Venting/Drainage
- Account for Thermal ExpansionWhen Progressive Dipping

- Avoid designing assemblies with susceptibility
 - **T** Follow guidelines in ASTM A384
 - Thermal treatment after cold working
 - Symmetrical design
 - Equal or near equal thickness in assemblies
 - **T** Overlapping joints
 - Progressive dipping

BEST PRACTICES TO AVOID WARPAGE & DISTORTION

- Process Controls
 - Perform immersions quickly and at largest possible dip angle
 - **T** Skip the quench
 - **T** Proper lifting and laydown techniques

GALVANIZE IT!

BEARING & SLIP CRITICAL TENSIONING

- **T** Bearing Type Connections
 - Presence of HDG does not affect performance
 - Oversized clearance holes not to be used
- Slip Critical Concerns
 - Newly galvanized steel is very smooth
 - **T** Lower slip coefficient than bare steel
 - Weathered galvanized steel is rough
 Increased slip resistance
 - Lock-up Effect
 - Oversize clearance holes 1/16in or per AISC LRFD

- Tensioning Galvanized Joints
 - **T** Use a washer underneath turning points
 - Calibrated Wrench, Direct tension indicator, or turn of nut
 - Lubrication to prevent galling

INSPECTION & REPAIR

- Repair to ASTM A780
 - Three acceptable methods of touch-up
- Initial inspection
 - **T** Coating thickness
 - Finish & Adherence
- Field inspection
 - **T** Coating Thickness
 - Areas where fabrication and/ or touch up done in the field
- **T** galvanizeit.org/repairseries

QUESTIONS & COMMENTS

- American Galvanizers Association
 www.galvanizeit.org
- 👕 Email
 - **T** aga@galvanizeit.org
 - Follow AGA on Social Media:
 - f /galvanizeit
 - 🕗 @AGAgalvanizeit
 - American Galvanizers Association Profile
 - in /American-Galvanizers-Association
 - Magalvanizeit

