Cofferdam Design and Construction Overview – MDOT Perspective

By Anthony Pietrangelo, P.E.
MDOT Geotechnical Construction Support Engineer
March 17th, 2015
Presentation Overview

• Cofferdam Overview
• MDOT Specifications
• Contractor Submittal of Calculations and Drawings
• Basics of Design
 – Geotechnical
 – Structural
• Construction Procedures
• Soil Types and Effects on Construction and Design
• Common Issues in Design and Construction
• Guidance Documents and Forms
• Safety
General

• **Cofferdams.** Construct partial or total enclosure cofferdams that permit construction of the substructure, above the seal or subfooting, in the dry without damage to the work. 704.03.C

• **Pay Item Cofferdams Includes:**
 1) Designing
 2) Furnishing
 3) Installing
 4) Maintaining
 5) Removing or cut off

* Includes steel sheet piling, bracing, tie-back, tie-back testing, walers and other related materials.
General
MDOT Specifications

- MDOT 2012 Standard Specifications for Construction section 704
 - SSC Subsection 104.02 – Working Drawings
 - MDOT Bridge Design Manual
 - AASHTO Standard Specifications for Highway Bridges 17th Edition

- Contract Plans

- Project specific Special Provisions included in Contract
• Specification Requirements
 – Subsection 104.02 – Plans and Working Drawings
 • Requirement for contractor to submit working drawings and calculations for cofferdams.
 • Where the combined depth of retained water and soil is less than 6 feet the contractor is required to submit working drawings for cofferdams prepared by an engineer competent in geotechnical and structural engineering.
 • Where the combined depth of retained water and soil is greater than 6 feet the contractor is required to submit working drawings for cofferdams prepared by a professional engineer, licensed in the State of Michigan competent in geotechnical and structural engineering. The working drawings and calculations must be sealed by the licensed engineer.
MDOT 2012 Standard Specifications for Construction

• Specification Requirements
 – Subsection 704 Steel Sheet Piling and Cofferdams
 • Provide new or used continuous interlocking steel sheet piling including connections in corner pieces. Used sheeting must be in good conditions.
 • Provide minimum nominal section modulus of at least 18.1 cubic inches per foot of wall when installed next to traffic or supporting traffic loads.
 • Both cold and hot rolled sheeting is permitted.
 • A copy of the cofferdam design and working drawings shall be provided and maintained at the job site as required by MIOSHA Construction Safety Standard
 • Vibratory hammers are permitted – see plan notes for exclusions
 • Do not pull up or redrive sheeting to match cut off elevation.
• Design in accordance with the AASHTO Standard Specifications for Highway Bridges, 17th Edition.
 – Sheet piling section modulus and embedment depth
 – Design criteria for bracing and bracing sections, connection and tie-back details, and deadman sections.
 – Assumptions and references for the design calculations
 – Any temporary loads for construction equipment, construction materials, traffic loading and any unbalanced hydrostatic pressure loading
 – Profile and Plan Views with cross sections
 – All located in Subsection 704.03.A
Contract Plans

• May Include:
 – Minimum section modulus
 • May call out specific type
 – Depth of sheeting may need to be reviewed if different section is being proposed.
 – Minimum Embedment Depths
 – Prohibit use of Vibratory Hammers
 – Only hot rolled sheeting is permitted.
 – Overall cofferdam dimensions.
 – Cut off elevations
 – Tremie thickness
Special Provisions

• Common items included in Special Provisions
 – Deflection Criteria, 2.0 inches maximum
 – Design based on Geotechnical Engineering Software including the following programs
 • SPW 911 by PileBuck International Inc.
 • SupportIT by GT Soft Ltd.
 • CivilTech Software Shoring Suite
 • Other software will be reviewed by the Department and requires approval prior to use.
 • Hand calculations for structural designs and details are acceptable.
Special Provisions Continued

– Include a minimum Live load surcharge of 360 psf.
 • Construction equipment loaded must be accounted for and may increase the live load surcharge.
 – i.e. Crain Loads applied directly behind sheeting.

– Sheeting adjacent to existing spread footings shall be designed using a uniform surcharge equal to the applied footing pressure.

– Bottom stability (piping and heave) and overall (global) stability evaluated for all stages of construction. Minimum factors of safety are included in SP.
Design/Submittals: Contractor’s Responsibility

- Submit proposed design to Construction Engineer 10 working days before starting work. (Standard Specs.)
- Special Provisions may require longer review cycle times.
- Multiple review cycles may be needed.
- Show sheet piling, section modulus, embedment depth, water level and bracing details.
- Excavation profile.
- Make sure cofferdam design are constructible.
- Work begins after Engineer’s acceptance.
Design/Submittals: Engineer’s Responsibility

- Engineer shall check the following:
 - Section modulus of sheet piling
 - Method of excavation, “dry” vs. “wet”
 - Hydrostatic forces
 - Construction staging and sequence.
 - Supporting Calculations for ever step in the excavation process.
 - Clearly define each construction sequence
 - Provide room for waler installation
 - Excavation Profile
 - Toe Embedment of the sheet piling
 - Bracing-If required
 - Structural Calculations
 - Connection Details
 - Two or more rows of Bracing require Apparent Earth Pressure Model used to calculate earth loads.
Design/Submittals: Engineer’s Responsibility

– Battered Pile vs Sheet Piling Conflict
 • If cofferdam is widened, Tremie design must be revisited by contractors Design Engineer.
 – Tremie is a designed element from Bridge Design Engineer
 – Consult MDOT Bridge Design Manual on Bending Stress analysis

– Driveability Analysis
 • Soil Profile
 – Sands vs Clays
 – Cobbles / Boulders
 • Vibratory hammer may not be as critical as Impact hammer
 • Sheeting must be able to withstand impact driving stresses.

– Other External Loads
 • Surcharge Loads
 • Soil surcharges (i.e. sloping backfill)
You never know what might end up on top of the cofferdam
Construction Sequencing
Staging Details of Cofferdams

• Layout of cofferdams shall match maintaining traffic staging details, and structure removal limits
• Minimum lane width, barrier, and bar splices shall be accounted for in layout.
• Coordinate with culvert manufacture to find out all culvert section dimensions.
• Stream diversion plan shall be included if required.
Staging Details
Design Program-SPW911
Sheet Piles

- Hot Rolled vs. Cold Rolled
- Hartman Reduction Factor
- Straight, Arch-Web, Deep-Web, & Z-Sections
Cold Rolled

- Produced from a coil by cold rolling the coil into a sheet pile shape.
- “Loose” interlock compared to hot rolled.
- Uniform thickness.
- Thickness limited to ½” based on coil thickness.
- Residual stresses in bends due to rolling process.
Cold Rolled
Hot Rolled Section

- PZ-35 Section Example
- Ball and Socket Interlock
- Better interlock
- More points of contact.
- Joints are less likely to leak than cold rolled
- Easier to install
 - Less Friction
 - Alignment
- Generally specified in permanent applications
Hot Rolled vs. Cold Rolled

- Effective vs. Nominal Section Modulus
- Hot Rolled and Cold Rolled Nominal Section Modulus.
- Contractor’s Engineer should check availability of Sheet Piling before specifying.
- Hartman Reduction Factor-Illinois DOT
- 83% Lower Bending Failure Stress
Construction Procedures

• Bracing Methods
• Sheeting Installation Methods
• Inspector to Verify Cofferdam Construction Matches Cofferdam Submittal
• Excavations Methods
• Tremie Seal/Pour
Bracing

- Struts
- Walers
- Tie Backs
- Bracing Rings
Internal Bracing

- Use of Walers and Struts to internally transmit load
- Tremie may also be used as a brace point once minimum strengths are achieved.
Strut and Wale Bracing
Waling

- Waling transmits forces from the sheet piling internally from side to side or into the anchor assembly. The wailing assembly may composed of struts (HP or W sections), channels, tie rods and connection bolts.
- Walers could also be used as a driving template to keep sheeting lines straight.
- Walers should be in contact with the steel sheet piling.
 - Gaps will need to be filled in with a structural detail
Structural and Connection Details

- Weld details and call outs
- Properly size walers and struts
- Correct end support conditions
 - Fixed – Fixed
 - Pinned – Pinned
 - Free end
- Continuous Walers
 - Splice detail
 - Negative Moments
- Structural Detail for when waler is not in contact with sheet pile
- Most common failure mechanism is connection details/failures
This is what is being built!
This is what is being built!
Installation Methods: Impact Hammer vs. Vibratory Hammer
Installation Methods/Soil Types:

Driving Steel Sheet Piling, Vibratory vs. Impact Hammer

• Designers typically add notes indicating if vibratory hammers are not permitted.
• Method used based on soil type and nearby structures.
• Contractors prefer Vibratory Hammer for sandy soils.
• Cohesive soil responds better to a Impact Hammer.
• Driveability analysis may need to be performed for Impact Driven sheeting.
 – Size sheeting accordingly
Excavation/Soil Types

• Wet vs. Dry Excavation
• Cohesive vs. Granular
• Excavation Done Before Driving Piles
• Equipment Used
 – Clam Shell-Crane
 – Excavator
 – Soundings
Tremie Seal

• Required Thickness
 – Based on uplift resistance to sheet piling/piles and weight of concrete mass to resist hydrostatic forces.
 – Allowable skin friction can not be greater then pull out resistance of sheet piling and piles.
 • MDOT Bridge Design Manual also list allowable bond stresses.
 – Bending Stress Calculation of unreinforced concrete
 • Generally controls if foundation piles are used.

• Required Strength Before Dewatering(706.03.H.3)
• Grade T Concrete
• Before Pouring Tremie, Verify All Soil Has Been Cleaned Out of Sheet Piling.
 – Pockets of sheet piling should be checked
• Tremie Tube Shall be Kept Embedded into Tremie Concrete.
Tremie Pour in the “Wet”
Removal of sediments after tremie pour.
Guidance Documents
- MDOT Form 1990

- MDOT Form 1990, Cofferdam Installation, Piling Placement, and Tremie Pour Inspector’s Checklist.

- Form is available on the MDOT forms website.

- Developed to prevent reoccurring geo-construction issues.

- Highlights sections already included in the 2012 Spec Book
Safety

• Limited Access
• Wet excavations/conditions
• Deep Excavations
• Adequate Walkways, Rails, and Ladders
• Flotation Devices
• MIOSHA-Part 9. Excavation, Trenching, and Shoring-Excavations >5 ft
• MIOSHA requires sealed cofferdam design be maintained on site
How safe is this?
Closing Thoughts

- Cofferdams should be designed and detailed so contractor and MDOT inspector can easily construct cofferdam and all required components.
- All construction stages clearly defined
- Structural members and connection details should be clearly detailed and understood.
- Cofferdams are contractor’s temporary works and can be revised as field conditions dictate.
 - However, changes must be reviewed and approved by design engineer, working drawings revised and resealed, reviewed and approved by MDOT.
Summary of Presentation

- MDOT Specifications
- Basics of Design
- Construction Procedures
- Soil Types and Effects on Construction and Design
- Safety

Questions?