Evaluation of Centerline Rumble Strip Impacts on Short-Term Pavement Performance

Peter Savolainen, Ph.D., P.E.
MSU Foundation Professor
Civil & Environmental Engineering
October 11, 2018

Overview

- Introduction
- Potential Pavement Quality Concerns
- Prior Research
- Study Design
- Results
- Maintenance/Design Strategies

Introduction: Michigan Rumble Strip Program

- Statewide installation program covering 5700 miles of high-speed, rural non-freeways
- 3-year installation period (2008-2010)
- Short-term evaluation examined safety impacts, along with other concerns:
 - Bicyclists
 - Noise
 - Pavement quality

Introduction: Potential Pavement Quality Concerns

- Rumble strips are generally milled into existing pavement surface
- Milling process may cause several detrimental conditions:
 - effective pavement surface thickness is reduced in the milled areas
 - milled areas may allow moisture to infiltrate the pavement surface
 - milled indentation may allow for water to pool and freeze
- Little published research exists pertaining to pavement deterioration associated with rumble strips

Prior Research

- 2001 Colorado DOT evaluated distresses in rumble strips; after 5 years, no detrimental impact found
- 2004 National survey showed 62.5% of states found no adverse effects; 8.3% experienced some problems (remainder unsure)
- 2008 Minnesota study found that grinding in rumble strips could be problematic on HMA pavement surfaces

Field Evaluation of Pavement Condition

- Visual reviews of pavement imagery data from biennial survey
- Random sample of segments along highspeed (55 mph), twolane rural highways throughout Michigan

Pavement Deterioration

- All pavements
 deteriorate over time,
 with rate of
 deterioration affected
 by:
 - Traffic load
 - Temperature
 - Moisture
 - Pavement age

Summary Data from Study Sections

		Rumbl	e Strip Sections	Control	Sections
Factor	Classification	Miles	Percent	Miles	Percent
Region	Upper Peninsula	131	47.6%	58	31.9%
	Northern Lower Peninsula	85	30.9%	69	37.9%
	Southern Lower Peninsula	59	21.5%	55	30.2%
	Total	275	100.0%	182	100.0%
AADT	Under 4,000	165	60.0%	109	59.9%
	Over 4,000	110	40.0%	73	40.1%
	Total	275	100.0%	182	100.0%
Pavement	2 yrs old	28	10.2%	26	14.3%
Age	3 yrs old	43	15.6%	36	19.8%
	4 to 5 yrs old	105	38.2%	64	35.2%
	6+ yrs old	99	36.0%	56	30.8%
	Total	275	100.0%	182	100.0%

Pavement Distress Quantification

- Pavement distress quantified using metrics such as:
 - Quantity (i..e, frequency)
 - Extent (i.e., length)
 - Severity (i.e., width/size)

Crack Propagation Examination

- Changes in number of cracks intersecting centerline compared before and after rumble strip installation
- Rate of crack propagation compared between segments where rumble strips were installed and comparable control segments

Marginal Rates of Crack Propagation (i.e., increases) Over Two-Year Period

Factor	Factor Level/Group	Mean	Std. Dev.
Rumble Strip Presence	Control Section (w/o Rumble Strips)	3.92	0.30
	Rumble Strip Section	4.11	0.26
AADT	Less than 4,000	3.63	0.27
	More than 4,000*	4.41	0.31
Geographic Region	Upper Peninsula	3.60	0.33
	Northern Lower Peninsula	3.75	0.33
	Southern Lower Peninsula*	4.71	0.38
Pavement Age (Second Year)	2 yrs old*	4.87	0.54
	3 yrs old*	4.96	0.44
	4 to 5 yrs old	3.37	0.31
	6+ yrs old	2.88	0.33

^{*}indicates propagation rates that are significantly higher at 95-percent confidence

Results

- Rumble strips did not significantly impact rate of crack propagation when controlling for other relevant factors
- Road segments with more than 4,000 vehicles per day showed 21.5 percent higher distress rate compared to lower volume segments
- Southernmost region of Michigan experienced higher rates of crack propagation than northern parts of the state (Weather? Traffic composition? Construction/Maintenance Practices?)

Maintenance

- Cutting into an asphalt joint could expedite deterioration
 - MDOT adopted joint density specification to ensure soundness of centerline pavement
- Chip seal
 - Rumble strips maintain functionality w/single chip seal
 - Double chip seal reduced effectiveness
 - MDOT updated Special Provisions, for double chip seal only top layer crosses the rumble strips
- Microsurfacing treatments found to nullify rumble strips
 - MDOT updated Special Provision, rumble strips should be filled in prior to surface treatment

Maintenance

- Crack treatments for longitudinal joints
- Various types of sealants (e.g., fog seal) and rejuvenators.

Recent Design Modifications

Conclusions

- Rumble strips likely to have some adverse impacts on pavement condition
- Design and maintenance strategies can mitigate the degree of these impacts
- Installation on local systems is strongly justified from an economic standpoint

Thank You!

Questions and comments?

Peter T. Savolainen, Ph.D., P.E.

MSU Foundation Professor

Civil & Environmental Engineering

Michigan State University

pete@msu.edu