

Innovation - Quality - Service

Void Reducing Asphalt Membrane (VRAM)

- Improving Longitudinal Joint Performance

County Engineer's Workshop
Bellaire, MI
2/14/18

Longitudinal Construction Joints

- Longitudinal construction joints
 - Commonly, the first area requiring maintenance on a pavement
- Issues
 - Can't achieve the same density at the joint as in the mat
 - Water and air intrusion accelerates damage

Longitudinal Construction Joints

- Methods to improve joint performance
 - Joint density requirements (typically target voids at 4" from joint to within 2% of center mat voids)
 - Echelon paving
 - Notched wedge joint
 - Cut off lower density edge
 - Mill and inlay
- All the above are "mechanical" solutions

Effect of In-Place Voids on Service Life*

Effect of Air Voids on Pavement Service Life

- For <u>7% air voids</u>, assuming 15 year service life at 100%
- For <u>9% air voids</u>, 94% of service life = 14 yr service life (1 yr reduction)
- For 10% air voids, 82% of service life = 12 yr service life
 (3 yr reduction)
- For <u>11% air voids</u>, 64% of service life = 9.6 yr service life (<u>5 yr reduction</u>)
- Regardless of method, the joint isn't the same air voids as the center of mat. The joint will deteriorate and ultimately fail first.

Void Reducing Asphalt Membrane (VRAM)

- Thick application of hot-applied, <u>polymer-modified asphalt</u> (~ 1 gal/sq yd for 1 ½" overlay)
- Application of 12" or 18" band applied before paving in the location of the new longitudinal joint
- Fills voids and reduces water intrusion at joint from the bottom up
- Protects underlying pavement layers
- Materials approach to improving joint performance

VRAM Application

Innovation - Quality - Service

Placed by pressure distributor with mechanical agitation in tank

OR

Manual strike off box fed from melting kettle

- Material criteria
 - Migrates upward from heat of mix and compaction to reduce permeability at the joint
 - Creates a <u>bond</u> to the underlying pavement and a bond between paving passes
 - Imparts <u>crack resistance</u> at the joint

- Construction criteria
 - Fills voids in the overlay in an area
 12" to 18" wide at the longitudinal joint
 - Resists <u>lateral flow</u> at placement
 - Provides <u>non-tracking</u>, no pick up from construction operation or traffic
 - Permits <u>rapid start of paving</u> after application
 - Allows <u>quick release to traffic for</u> moving construction zone

VRAM Performance History

Innovation – Quality - Service

VRAM Experimental Test Sections Placed in 2002 – 2003

Illinois DOT

- District 7 US-51 Elwin
- District 1 US-50 Richton Park
- District 2 IL-26 Cedarville

IDOT D7 Elwin US-51 after 15 Years

VRAM Joint transition to control

VRAM section

IDOT D2 Cedarville IL 26 after 14 years

VRAM Test Section

All pictures were taken in 2017

Transition from Control Section to VRAM Section

Control Section

IDOT D1 US 50 Richton Park after 14 years

VRAM Test Section

Control Section

VRAM Recommended Guideline Special Provision

Test	Test Requirement	Test Method
Dynamic shear @ 88°C (unaged), G*/sin δ, kPa	1.00 min.	AASHTO T 315
Creep stiffness @ -18°C (unaged), Stiffness (S), MPa m-value	300 max. 0.300 min.	AASHTO T 313
Ash, %	1.0 – 4.0	AASHTO T 111
Elastic Recovery, 100 mm elongation, cut immediately, 25°C, %	70 min.	AASHTO T301
Separation of Polymer, Difference in °C of the softening point (ring and ball)	3 max.	ASTM D7173, AASHTO T53

VRAM Guideline Special Provision

Innovation – Quality - Service

VRAM shall be

- ... suitable for construction traffic to drive on without pick up or tracking within 30 minutes of placement.
- ... be applied not less or greater than 1.5" of the width specified in the plans. The VRAM shall not flow more than 2" from the initial placement width.
- Density testing, one foot on either side of the joint, will be waived.

Application Rate and Width Table

Overlay thickness, in	VRAM width, in	VRAM Application Rate, lb/ft*	
SMA			
1 ½	12	0.83	
1 3/4	12	0.92	
2	12	1.00 (= 1.05 gal/yd²)	
HMA			
1	18	1.15	
1 1/4	18	1.31	
1 ½	18	1.47	
1 3/4	18	1.63	
2	18	1.80 (=1.26 gal/yd²)	

^{*} Rates based on coarse-graded HMA

Effect of VRAM on Voids at Joint

Innovation – Quality - Service

Example

- HMA @ 5.5% AC, @ 1.5" thick/square yard = 9 lb of AC
- VRAM @ 1.47 lb/ft 18" equates to 8.8 lb AC/square yard
- Total AC in HMA + VRAM = 10.3%
- For 10-13% air voids @ joint, VRAM would occupy 2/3 of overlay height

Cross Sectional View at Longitudinal Joint

Current States with VRAM Experience

- Illinois
- Ohio
- lowa
- Indiana
- Michigan
- Missouri

Types of Roads using VRAM

Innovation – Quality - Service

Interstate: ODOT I-77

Urban: Indianapolis DPW 56th St

County: Champaign Co, IL Dewey-Fisher Road

VRAM Summary

- Application rate based on volumetrics (tailored to specific mix types)
- Provides a <u>material solution</u> to reducing air voids at the longitudinal joint
- Multiple field projects indicate <u>improved long term field</u> <u>performance</u>
- Reduces need for joint maintenance and increases the life of the pavement
- Provides <u>improved cracking resistance</u>

Heritage Research Group

