Saving Time with Steel Tub Girders in St. Clair County

Presenters:

Bill Hazelton

St. Clair County Road Commission Director of Engineering

Dewayne Rogers St. Clair County Road Commission Project Manager

Guy C. Nelson PE, SE TEG Engineering, LLC Structural Engineer

St. Clair County, Michigan

226 Bridges County Wide

- 38 Load Limit Posted
- 2 Closed To Traffic

Structure Condition Summary

- Good/Fair (5 or Greater) 185
- Poor (4) 21
- Serious/Critical (3 or Less) 20

History of TEG Engineering, LLC

- Founded in 2007, Licensed
 Engineering Firm in 41 states.
- Prequalified for Design Services with both TxDOT and MDOT
- Headquartered in Grand Rapids,
 Michigan, other office in Houston
- Over 22 Employees
- Civil Structural Engineering Firm Specializing in Precast Concrete for Heavy Civil Construction.
- Member of AISC, ACI, PCI, NSBA and SSSBA

Prefabricated Structures Specialists

TEG selected by CBP, one of over 300 applicants

Border wall prototypes take shape at San Diego construction site

Prefabricated Structures Specialists

30' Tall Precast Concrete Wall

2 Posted Bridges on Marine City Hwy

- Marine City Highway over Unnamed Canal (4-08)
- Marine City Highway over Meldrum Drain (4-09)

2 Superstructure Replacements on a heavily trafficked local highway

Marine City Highway is a 2 lane road with more than 16,000 ADT.

Marine City Intersection at County Line Road

Goals of Superstructure Replacement

- Utilize the existing abutments
- Match the existing superstructure depth
- Maintain constructability by county maintenance crew
- Structure design per MDOT HL-93(MOD) loading
- Additional 60 year service life

Existing Marine City Hwy over Meldrum Drain (4-09)

Why Tub Girders Were Chosen

Steel Bridge

\$75,000 + HMA Overlay + Guardrail

- + Labor
- + Equipment

Pre-Cast Box Culvert

\$63,000

- + Headwalls
- + Wing Walls
- + Crane Rental
- + Earthwork/Heavy Demo
- + HMA
- + Labor
- + Equipment

Tub Girder with Pre-Cast Deck

\$57,000

- + HMA Approaches
- + Epoxy Overlay
- + Guardrail
- + Labor
- + Equipment

***Based on Engineer's Estimate, the Tub Girder system was approximately 10% cheaper in this particular application.

History of the Con-Struct System

- Con-Struct was Developed in 2003
- Con-Struct is a Press-Brake-Formed Steel Tub Girder Bridge System with a Network of Manufacturers throughout the United States.
- First Project was in Saginaw, MI 2004
- Approved for use in 5 States and Saskatchewan, Canada.
- Over 25 bridges installed with Spans ranging from 20' to 80'
- Bridge Locations in Missouri, Michigan, Texas, Minnesota and Colfax, SK

Bridge over Brainerd Raceway Installed in 2007.

Con-Struct Bridge System Components

Integral Backwall

FHWA GRS-IBS Project

Con-Struct Prefabricated Bridge Solution

- Con-Struct Standardized and Simplified
 Fabrication and Details
- Industry can Produce Press Brake
 Formed Steel Tub Girders in 58'
 Continuous Lengths
- Precast Concrete Industry Involved in Manufacturing Process
- New high-strength, non-shrink grouts provide durable solutions for deck joints
- FHWA involvement in innovative projects and funding (ABC, UHPC and GRS)

Con-Struct Prefabricated Bridge Solution

- Independently researched and tested by MDOT through Michigan State University (MDOT installed their own bridge in 2011)
- Installed and ready for traffic in a single day Tested Capacity

Simple and durable deck joint
 Connection

- 75 year service life
- Delivered and installed at less cost than that of conventionally constructed concrete beam bridges

Press-Brake-Formed Steel Tub Girders

2016 Research Funded by SSSBA

- IBC-16-95 Evaluation of Modular Press-Brake-Formed Steel Tub Girders
- Joint effort from West Virginia University, Marshall University and University of Wyoming
- Assess Feasibility and Details
- Test Fatigue and Distribution Factors
- Determine Applicable Design Methods
 - AASHTO LRFD

Press-Brake-Formed Steel Tub Girder

Press-Brake-Formed Steel Tub Girder

- Press-Brake-Formed Steel Tub Girders No Flange to Web Welds, Reduced Fabrication Costs
- Per AISC Bend Radius > 4t No Brittle Fracture, AASHTO Category B Fatigue

Press-Brake-Formed Steel Tub Girder - Galvanize

Hot-Dip Galvanized Shear Studs

Double-Dip Process

- Hot-Dip Galvanized to Provide 60+ Year Protective Coating
- Stern Bayou in Ottawa County was Galvanized in 1966 with no current signs of coating deterioration

Precast Concrete Deck Panels

• Simple Panel Installation Utilizing High Strength Grout

Dayton Superior Conspec 100

- MDOT Type H-1
 - QuickCrete Precision Grout

HPC Grout

Place Grout into Precast Panel Shear Stud Pockets and Tranverse Joints

AASHTO/MDOT Design Procedures

- Standard Designs from 20' to 80' Spans
- Follows AASHTO LRFD and MDOT Design for HL-93(MOD) Loading
- Tested AASHTO Live Load Distribution Factors
- Easy to Follow and Check Mathcad Calculations
- Compatible with MDOT Load Rating Standard Spreadsheet

3/30/2017

50 FT SPAN - U18X88 SECTION DESIGN

1. Con-struct Input Parameters

1.3 Slab/Girder Section Properties

<u>1.</u>	3.1 Section Dimensions			
	t _s := 8	(In) Thickness of slab	$b_s := \frac{W \cdot 12}{Beams_{Unit}} = 84$	(in) Width of slab and overlay
	t _{overlay} := 0	(In) Thickness of overlay	b _t := 5.5	(in) Width of Top Flange
	t _{ws} := 0	(In) Thickness of wearing surface	h _w := 17.25	(in) Height of Web
	$t_t := \frac{3}{8}$	(In) Thickness of Top Flange	b _b := 18	(in) Width of Bottom Flange
	$b_w := t_t = 0.375$	(In) Thickness of Web	b <u>h</u> := 5.5	(in) Width of Haunch
	$t_b := t_t = 0.375$	(In) Thickness of Bottom Flange		
	$t_{\underline{h}} := 2$	(In) Depth of Haunch		
	θ := 76	Angle of Web to the Horizontal	$r_{inner} := 4t_t = 1.5$	(in.) Inner Radius of Corner Bend
	$\theta_{\rm rad} := \theta \cdot \frac{\pi}{180} = 1.33$	Angle of Web to the Horizontal	$r_{outer} := 5t_t = 1.88$	(in.) Outer Radius of Corner Bend
	$\Delta := L_{\text{span}} \cdot \frac{3}{50} = 3$	(In) Camber	$r := 4 \cdot t_t + 0.5 \cdot t_t = 1.69$	(in.) Center Radius of Corner Bend
	$D := \frac{\left(h_w + t_t - 2 \cdot \sqrt{2} \cdot t_t - 2 \cdot \sqrt{2} \cdot t_t\right)}{\left(h_w + t_t - 2 \cdot \sqrt{2} \cdot t_t\right)}$	$\frac{r^2 - 2 \cdot r^2 \cdot \cos(\theta_{rad})}{\sin(\theta_{rad})} = 15$.53 (In.) Depth of Web Measu	ired Along Slope
	$L_{tub} := 2.D + 2 \cdot b_t + b_t$	$b + 4 \cdot r \cdot \theta_{rad} = 69.01$ (in) Total	Length of tub along section	

Con-Struct Prefabricated Bridge Advantages

- LEED Material Comparison
 - Prestressed Concrete Beam (PCB) vs. Con-Struct Steel Tub
 - 88% of Steel is Recycled
 - $\frac{1}{2}$ the Volume = $\frac{1}{2}$ the Weight

Con-Struct

Prestressed Concrete I-Beam

LEED MATERIAL COMPARISON						
Prestressed Concrete Beam (PCB) vs. Con-Struct Steel Tub Girder						
	PCB	Con-Struct	Unit			
VOLUME _{STEEL TOTAL}	0.078	0.210	ft ³ /ft			
VOLUME _{CONCRETE} TOTAL	8.248	3.876	ft ³ /ft			
VOLUME _{TOTAL}	8.326	4.086	ft ³ /ft			
VOLUME_{SAVINGS}		4.240	ft ³ /ft			

Fabrication For New Superstructures

- Fabrication of the Con-Struct superstructure began 2
 months prior to bridge demolition
- Bridge units were manufactured at ADL Systems in Portland, MI
- In-plant Quality Assurance Testing Done by Consultant

Galvanized Steel Tub Girders

Fabrication of Bridge Unit

Demolition of Existing Bridges

- On Monday Oct 9th, (Nov 6th) Marine City Highway was closed to traffic
- Monday and Tuesday county crew removed existing bridge superstructure

Existing Steel Beams

Existing Substructure to Remain

Repair of Existing Abutments

- Existing abutments were repaired with Transpo T-17 Polymer Concrete patch material
- MDOT heavy riprap was used as scour protection of existing spread footing abutment

Existing Abutments

Riprap for Scour Protection

Install New Superstructure

- On Thursday Oct 12th (Nov 9th)
 Con-Struct bridge units were delivered
- Bearing pads and expansion joint material were placed on abutment
- Con-Struct superstructure units arrived before 8:00a.m.

Bearing and Joint Filler

Con-Struct Bridge Units

Install New Superstructure

- County excavator was used to install 25' span units for bridge 4-08 (crane was used for 35' 4-09)
- All 6 Con-Struct superstructure units were all placed before noon
- Units were cast with integral backwalls

Excavator to Install 4-08

Crane to Install 4-09

Install New Superstructure

- Transpo T-17 Polymer Concrete was used for the deck joint between units
- T-17 was tested for rebar development length and the joint designed specifically for T-17 material

Pouring T-17 Polymer Joint Concrete

Forming Deck Joint

- Over the following 5 days asphalt approaches were paved,
- Guardrail posts were installed......

Pave 20' Approach

Install Guardrail Posts

- Slopes were re-graded,
- Existing wing walls were repaired......

Re-grade Slopes at Approach

Repair Existing Wingwalls

- A thin epoxy overlay was placed on the new concrete deck surface for 4-08 bridge
- The thin epoxy overlay was not done for 4-09 bridge due to weather limitations

Place Epoxy Compound

Cover with Aggregate and Re-Epoxy

- Guardrail was installed
- Slopes were restored

Install Guardrail

Slope Restoration

Marine City Hwy over Unnamed Canal (4-08)

- Total Completed Cost = \$180,751.46
 - Includes material, labor, overhead, equipment
- Total Completion Time = 10 Working Days

Marine City Hwy over Meldrum Drain (4-09)

- Total Completed Cost = \$222,843.83
 - Includes material, labor, overhead, equipment
- Total Completion Time = 10 Working Days

Installation Video

Saving Time with Steel Tub Girders in St. Clair County

In Conclusion:

EGcivil

- 80% Less Expensive Than Reconstruction
- 90% Less Traffic Delays

Past successes are bridges that lead to our next victory. ~ Jeffrey Benjamin

Thank you for your time !

Presenter Info:

Bill Hazelton St. Clair County Road Commission Director of Engineering whazelton@stclaircounty.org

Dewayne Rogers St. Clair County Road Commission Project Manager <u>drogers@stclaircounty.org</u>

Guy C. Nelson PE, SE TEG Engineering, LLC gnelson@tegcivil.com www. constructbridge.com

