

Advances in NDE Technology WHATS NEW?

6

Glen Simula, Owner GS Infrastructure, Inc.

The state of America's deteriorating infrastructure presses us to find solutions to assess, with limited funds and resources.

Current NDT Evaluation Methods

Hammer Sounding

Chain Dragging

Reach-all Truck

www.ndtoolbox.org/content/bridge/cd-description www.bridgeriggers.com

Automating and Enhancing NDE

Value of Automated NDE

- Eliminate Lane Closures
- Safety
- Reduce manual data collection
 - Data integrity
 - Efficiency in both cost and time savings
- More data acquired
- Accuracy
- Asset Management

GPR Technology – Where It Started.

Original or Standard GPR is a 2 Dimensional (2D) Wave Transmission Method

Transmits Electromagnetic (EM or Radio) Waves at a Fixed (Single) Frequency Signal

Data is Collected in 2D (Time and Distance)

ASTM Specifications

ASTM Specifications:

ASTM 6087 "Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar"

ASTM D6432 "Standard Test Method for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation"

GPR Technology – Now.

X

GPR is a noninvasive, nondestructive testing tool for mapping subsurface conditions

A GPR unit transmits electromagnetic energy into the ground.

Energy encounters a buried object or a boundary between materials having different dielectric constants or varying densities

Energy is reflected, refracted or scattered back to the surface

X

The three-dimensional (3D) array used by GS Infrastructure gives the analyst the ability to determine depth of defects, as well as sf areas

Frequency Range 200-3000 MHz Number Of Channels 21 Channel Spacing (Cross-Line) 75 mm

Antenna Width 1.8 m Effective Scan Width 1.575 m

X

A transmitting multi-antenna array sends out a Step Frequency Signal

A receiving multi- antenna array records the changes in the return signal

Display of channel array, displacement of elements and channels of the standard scan pattern.

Results in Time, Distance, Depth

The **BLUE** vertical section shows the traveling direction of the antenna

Vertical Section, Traveling Direction (Inline Slice)

3D Image of Radar Array

The **GREEN** horizontal section depicts a top view of the antenna array

Horizontal Section (Horizontal Slice)

3D Image of Radar Array

The **RED** vertical section shows the crossline slice

Vertical Section Antenna Direction

3D GPR Bridge Deck - Collection

Watson Road, DeKalb IL

3D GPR Bridge Deck - Analysis

Watson Road, DeKalb IL

3D GPR Bridge Deck – CAD Deliverable

Watson Road, DeKalb IL

3D GPR Bridge Deck - Automated Reporting 🔀

1109 Watson Road								
# of Total Scan Area Total Defect Area % Total Defe								
Defect Type	NDE Method	Scan Element	Defects	(SF)	(SF)	Total Scan Area		
Deck Surface Deterioration (D#)	Visual & GPR	Deck Top (lanes only)	3	5,975.75	15.53	0.3%		
Patch (P#)	Visual & GPR	Deck Top (lanes only)	14	5,975.75	444.95	7.4%		
Spalls (S#)	GPR	Deck Top (lanes only)	5	5,975.75	2.81	0.05%		
Top Deterioration (TD#)	GPR	Deck Top (lanes only)	12	5,975.75	191.42	3.2%		
Bottom Deterioration (ZD#)	GPR	Deck Top (lanes only)	10	5,975.75	52.58	0.9%		
				Total Indications	707.29	11.84%		

Watson Road, DeKalb IL

3D GPR - Rebar

Devils Lake, ND

INFRASTRUCTURE GS INFRASTRUCTURE – PROPRIETARY

3D GPR - Utilities

3D GPR - Utilities

3D GPR - Utilities

Infrared Thermography (IR) - Substructure 🔀

IR Substructure - Collection

Substructure and Underdeck IR Collection

Ground Platform

Maritime Platform

IR Substructure - Collection

IR Photos Collected in Field

IR Substructure - Analysis

IR Analysis

IR Substructure - CAD Deliverable

IR Delamination Locations

IR Substructure – Automated Reporting

		Bent #2	Summary			
				Total Scan Area	Total Defect	
Defect Type	NDE Method	Scan Element	# of Defects	(SF)	Area (SF)	% Total Defects
Delamination (D#)	IR and HD Visual	Columns A-G & Bent Cap	59	3,906.00	427.35	10.94%
Spalls (S#)	IR and HD Visual	Bent Cap	1	3,906.00	2.51	0.06%
				Total Indications	429.86	11.01%

	38th Street over CSX Railroad							
Bent # 2								
Face	Delamination D#	Area (ft ²)	Max. L (ft)	Avg. W (ft)	Reference Feature	Notes		
W	D1	2.51	2.73	0.92	Bent Cap	North end		
W	D2	2.66	7.98	0.33	Bent Cap	Between Col. A and Col. B		
W	D3	10.64	8.29	1.28	Bent Cap	Between Col. A and Col. B		
W	D4	24.23	2.93	8.26	Col. B	Midpoint to top of column		
W	D5	6.83	11.09	0.62	Bent Cap	Above Col. B		
W	D6	3.34	3.60	0.93	Bent Cap	Between Col. B and Col C.		
W	D7	0.08	0.08	1.00	Col. C	Top of Col. C		
W	D8	11.26	14.27	0.79	Bent Cap	Above Col. C		
W	D9	0.79	4.17	0.19	Bent Cap	Between Col. C and Col. D		
W	D10	6.59	4.45	1.48	Bent Cap	Above Col. D		
W	D11	29.07	78.06	0.37	Col. D/Bent Cap	Top of Col. D and in to bent cap		
W	D12	4.95	4.66	1.06	Bent Cap	Above Col. D		
W	D13	1.94	1.88	1.03	Bent Cap	Between Col. D and Col. E		
W	D14	1.21	1.39	0.87	Bent Cap	Between Col. D and Col. E		
W	D15	5.78	3.24	1.78	Col. E	Top of Col. E		
W	D16	24.84	17.81	1.39	Bent Cap	Above Col. E		
W	D17	8.74	4.90	1.78	Bent Cap	Between Col. E and Col F.		
W	D18	0.90	1.11	0.81	Col. F	Center of Col. F		
W	D18A	33.58	8.86	3.79	Bent Cap/Col. F	Top of Col. F and into bent cap		
W	D19	6.78	5.43	1.25	Bent Cap	Between Col. F and Col. G		
W	D20	0.64	1.15	0.56	Col. G	Top of Col. G		
W	D21	6.50	69.90	0.09	Bent Cap/Col. G	Top of Col. G and in to bent cap		
N	D22	15.68	9.75	1.90	Col. F	Top of column		
N	D23	2.00	3.50	1.02	Col. E	Top of column		
N	D24	0.75	8.41	2.02	Col. D	Top of column		
N	D25	12.66	2.50	0.05	Col. D	Top of column		
N	D26	3.70	6.21	0.84	Col. C	Top of column		
N	D27	1.50	3.20	0.74	Col B	Top of column		
N	D28	5.62	7.47	1.25	Col B	Top of column		
E	D29	4.80	3.63	1.61	Bent Cap	Between Col. G and Col. F		

IR - Bridge Deck

IR detects the energy differential on a surface caused by voids and objects beneath the surface.

These voids and objects are are affected by natural diurnal heating and cooling cycles.

IR Bridge Deck - Collection

Bridge Deck IR

IR Bridge Deck – CAD Deliverable

IR Bridge Deck – Automated Reporting

						% Total
						Defect Area of
	NDE			Total Scan	Total Defect	Total Scan
Defect Type	Method	Scan Element	# of Defects	Area (SF)	Area (SF)	Area
Indication of						
Delamination (D#)	IR	Deck Top (lanes only)	27	5,365	144.42	2.69%
Patch (P#)	Visual	Deck Top (lanes only)	5	5,365	30.32	0.57%
Spall (S#)	Visual	Deck Top (lanes only)	3	5,365	8.49	0.16%

Patch	Length	Width	Area	Station	Offset	
(P#)	(FT)	(FT)	(SF)	Final	(LT or RT)	Notes
P1	1.08	2.04	2.20	1417+80.80	L41.9	
P2	2.88	2.46	7.08	1417+84.41	L34.8	
P3	2.56	2.82	7.24	1417+87.40	L28.7	
P4	2.43	1.40	3.39	1417+88.06	L40.3	
P5	4.01	2.60	10.41	1417+90.98	L34.1	
		Total	30.32			

Spall (S#)	Length (FT)	Width (FT)	Area (SF)	Station Final	Offset (LT or RT)	Notes
S1	1.42	1.09	1.55	1417+80.94	L61.8	
S2	2.47	1.79	4.42	1417+84.85	L28.4	
S3	2.14	1.17	2.52	1417+89.11	L34.0	
		Total	8.49			

8.49

Thank You!

www.gsinfrastructure.com

