Atwater Street Load Rating

Agenda

- § Project Background
- **§** Structure Description
- S Load Rating Approach and Analysis
- **§** Findings

Project Background

- § The Detroit Grand Prix moved back to downtown Detroit last summer for the first time since 1988.
- IndyCar racecars (think Formula 1) sped along a 1.7-mile track through the City of Detroit reaching speeds of up to 190 mph.

2023 CHEVROLET DETROIT GRAND PRIX PRESENTED BY LEAR

General IndyCar Requirements

- **§** Surface must be smooth without large bumps.
- Surface must be able to endure extreme lateral loads & heavy braking
- S All manhole covers must be level with the streets surface and either bolted or welded shut.
- Surfaces must resist tires heating up to 220deg F (104.4deg C)
- Sobstructions (e.g. signposts) must be removed.

Design Overview

Atwater Street Structure

Atwater St. Work

HNTB MICHIGAN BRIDGE WEEK MARCH 12, 2024

Atwater St Load Rating

Atwater Street Structure

Atwater St. Prior to circa 2000 construction

Atwater Street Structure

HNTB

Longitudinal Girder

HNTB

Initial Load Rating Investigation

S Adding load to the structure, no existing rating or calculations on file -> need to evaluate

- **§** Initial investigation was performed.
 - Design check using AASHTO Std. Spec and loads per original plans was performed
 - Structure designed for HS-20
 - **§** Unknown if Alternate Military Loading was considered.
 - Simple beam model for analysis
 - Structure did not pass, especially torsion in longitudinal girders
- S Moved to perform a load rating
 - Time was short (had to complete analysis to keep construction on schedule)
 - Just need a rating all parties could live with (pencil sharpening could be done later)

Load Rating Scope

- S Atwater Street Between Renaissance Dr W and Beaubien Blvd (i.e., Gridline 1 to 36 and Gridline NN to MM)
- Structural members (transverse beams, longitudinal girders, deck and columns) built from 1998 design plans were rated

Load Rating Criteria

§ LRFR

- MDOT Bridge Analysis Guide
- S Dead Loading
 - New 3" uniform additional overlay asphalt wearing surface
 - New Temporary race barrier
 - Existing hanging utility loads
 - Existing wearing surface, partially milled down
 - Existing misc. dead load from planters, light poles, benches, etc. on Atwater St.
- § Live Loading
 - All 28 MDOT Legal Vehicles
 - "Normal" Loading was used given that Atwater is not frequented by heavy vehicles
 - Live load factors were taken from the Bridge Analysis Manual using Atwater St. ADTT

Analysis Approach: 2D Grid FE Model

- **§** AASHTOWare Bridge Rating could not:
 - Model the transverse CIP beams framing into long. beams.
 - Load rate columns
- S Creates 2D grid finite element model in CSiBridge

Grid Model for Analysis

HNTB MICHIGAN BRIDGE WEEK MARCH 12, 2024

Grid Model for Analysis

§ Model deflection under beam self-weight (gridline 1-12)

Grid Model for Analysis

§ Influence Surface Diagram for Torsion at the i-end of Frame 250

Load Rating Steps

Beam Capacity Calculation

 Capacities calculated at both ends and middle of the transverse beams and the longitudinal girders

Capacities

	Flexure (M+):	2054.82	kip-ft
	Min. Reinf (M+):	2054.82	kip-ft
	Flexure (M-):	1478.67	kip-ft
Strongth	Min. Reinf (M-):	9999.00	kip-ft
Strength	Shear:	231.34	kip
	Combined Shear & Torsion (Shear):	159.73	kip
	Combined Shear & Torsion (Torsion):	115.51	kip-ft
	Long. Reinf for Torsion:	914.40	kip
Service	Flexural Distribution (M+):	1315.70	kip-ft
Service	Flexural Distribution (M-):	971.53	kip-ft

Rating Factor (RF) Calculation

- S Condition factor = 1
- System factor = 1

$$RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) \pm (\gamma_{P})(P)}{(\gamma_{LL})(LL + IM)}$$
(6A.4.2.1-1)

- Setting factor calculated for Strength I and Service I
- **§** RF calcs were organized similar to BrR output

Frame 💌	Location Fraction	AnalSect 💌	Load Combination	Check	Step Type 💌	Attribute 💌	OutputCase	Live Load 🔽	Dead Load 🔽	DL 👻	LL 🔹	Capacity 🔽	RF ⊸⊺
216	1	NB35	Strength I	Combined Shear & Torsion (Torsion):	Min T	Т	MI 2 Unit Truck 16-NL	121.2090985	72.94384182	1.25	1.235722222	226.513828	0.903547363
216	1	NB35	Strength I	Combined Shear & Torsion (Torsion):	Min T	Т	MI 2 Unit Truck 17-NL	125.6981271	72.94384182	1.25	1.174577778	226.513828	0.916634954
221	1	NB14	Strength I	Combined Shear & Torsion (Torsion):	Min T	Т	MI 2 Unit Truck 16-NL	118.5616545	66.61393767	1.25	1.235722222	219.3860508	0.929078601

Findings

- Structure is inadequate to carry the full weight of Michigan-specific legal loads
- § Side-by-side loading and axle weight were critical, unlike a bridge where total load is generally related to RF
- S Columns did not control
- S Deck did not control

Findings

S Combined shear and torsion produced the minimum rating factor

Findings

S Combined shear and torsion produced the minimum rating factor

- Higher torsion observed in longitudinal girders
- Torsional resistance is less than torsional cracking moment -> cannot redistribute torsion
- Checked ACI codes revisions related to torsion design back to 1988 edition
- Use general procedure in LRFD to calculate angle of inclination to increase torsional resistance

Final Load Rating Recommendations

- Second entry to the elevated Atwater stretch
- S Recommend performing load rating on portions of Renaissance Drive West and Beaubien Boulevard which are also supported on structure

Construction Check

- S With a low rating, how would the contractor mill and overlay the street?
 - Golf carts with dumps on the back?
- **§** A construction check was performed.
- S The delivery method was CMGC so we could talk directly with the contractor and get exactly what equipment they were going to use.
- S We analyzed configurations of milling and paving machines, and dump trucks.
- Plan notes were developed to control equipment spacing.
- **§** In-line is ok, side-to-side is problematic.

If we had more time....

- S Explore the consequences of allowing torsional re-distribution in beams which weren't designed for torsion at all.
- **§** Strategically consider cracked section properties to further re-distribute forces.
- **§** Evaluate torsion capacity using other methods like strut & tie.
- **§** Evaluate using striped lane locations.
- **§** Look at decreasing impact due to low speed along Atwater.

Race Results

§ The race started a little rough....

Race Results

§ But Alex Palou, who also won pole position, was the victor

