GREEN TECHNOLOGY:
OPTIMIZING PAVEMENT RECYCLING METHODS IN INGHAM COUNTY
Daniel Troia, P.E.
Design/Project Engineer
INGHAM COUNTY ROAD DEPARTMENT (ICRD)
dtroia@ingham.org
Why Recycle?

- Utilize Already Paid-For Materials
- Existing Pavement Source of Quality Aggregates
- Reduce Cost, Extend Project Budgets
- Facilitate Improved Pavement Structure
- Conserve Resources
  - Reduce Trucking Costs
  - Reduce Virgin Material Consumption
  - Reduce Energy Consumption
- But Most Important...
RECYCLING SAVES $$
Most Common Pavement Recycling Methods -

- Cold Milling Hot Mix Asphalt (HMA) Pavements
- HMA Base Crushing and Shaping
- Hot-in-Place Recycling (1 - 2 inch partial depth)
- Cold-in-Place Recycling (3 - 5 inch partial depth)
- Full Depth Reclamation (4 - 8 inch depth)
Emerging Technology -
- Ground Tire (Crumb) Rubber Modified HMA Pavements
COLD MILLING
HMA
PAVEMENTS
Cold Milling HMA Surface

- Traditionally Contractor Property, RAP utilized in Hot Mix Asphalt
  - No Compensation to Owner
  - Material Value Lost
Cold Milling HMA Surface

- Repurposed Uses by Ingham County
  - Maintenance Stockpiles
    - Trucking Cost Not Eligible for Federal Participation
  - Trucking Costs Double
  - Trucking Currently Scarce, Expensive
Cold Milling HMA Surface

Recycling HMA Surfaces Special Provision:

- Repurposed RAP Used on the Project Multiplies Cost Savings:
  - Eliminate Trucking Out RAP
  - Reduce/Eliminate Trucking Pit Aggregate In
- Repurpose Material on Nearby Project(s)
  - Trucking Paid Separately (One Way Only)
  - Non-Participating Pay Item
- Coordinate Projects for Efficiency
HMA BASE CRUSHING (AND SHAPING)
HMA Base Crushing (and Shaping)  
Same Recycling Principles as Cold Milling  
Recycling HMA Surfaces Special Provision:

- Separate Crushing from “Crushing and Shaping” (Recycled Aggregate Production)
- All HMA Removals Specified for Recycling (HMA Surface, Rem, Special)
- Stockpiling and Handling Included with Modified or Special Pay Items
- Estimate Available Quantity with Pavement Cores
Recycled Aggregate Use

- Aggregate Bases
  (Especially Crush & Shape/Widening Projects)
- Stabilized RAP/Aggregate Bases (CIPR, FDR)
- Approach, Cl III
- Shoulder, Cl III
- Subgrade Undercutting
- Embankment

Engineer Retains Authority to Restrict Use of All Recycled Aggregates
Recycled Aggregate Sources

- Project Removals (Crushing/Cold Milling)
- Imported from Off-Site Location(s)
  - Other County Project(s)
  - Processed/ Crushed Material Supplier
  - Contractor Yard
  - Other Contractor Projects
Recycled Aggregate Base (Imported)  
Aggregate Base, Modified Special Provision:

- 21AA Base Gradation (Imported Aggregate)

- Tolerance Ranges Permit Acceptable Variability

- Testing at Engineer Discretion:
  - At Stockpile (Source) Location
  - On Project
  - Remediation Permitted

- 1/2 the Cost of Virgin (Pit) Aggregate

- Quality Comparable (Better?) than Pit Aggregate
Recycled Aggregate Base
Aggregate Base, Modified Special Provision:

Compensation Strategies

- Separate Pay Items for Different Depths (SYD)
  (Within X-Section, e.g. Widening)
- Amalgamated Depth Pay Item (SYD)
- Weight (TON) - Requires Scale Tickets
- Volume, LM (CYD)
- Volume, CIP (CYD)??
Recycled Aggregate Base

Aggregate Base, Modified Special Provision:

- Multiple Pay Items = Inspection Intensive
- Separate Pay Items for Different Depths
  - Aggregate Base Conditioning (No Grade Change)
  - Aggregate Base, Salv, __ inch (Widening, Cut, Fill)
  - Aggregate Base, RAP __ inch (for Stabilized Base)
- Transition Points Subjective
- Overrun Risk to Owner
Recycled Aggregate Base

Aggregate Base, Modified Special Provision:

- Single Pay Item Regardless of Depth Variation, Either Across X-Section OR Throughout Alignment
  - Aggregate Base, Modified, _ inch
  - Pay Limits Per Typical Section = Reduced Inspection
  - Contractor Assumes Risk for Available vs Imported Material
  - Include Pavement Cores in Contract Docs
New Construction
With
Recycled Aggregates
Produced from

- Cold Milling HMA Surface
- HMA Base Crushing

= COST SAVINGS
ICRD Recent Project Savings
2015 Lake Lansing Road, Meridian Twp:
- 1.0 mi, Widen 2 to 3 Lanes, Crush & Shape
  - Quantity for Widening Will Be Imported
  - Aggregate Base, Modified, 9 inch $ 3.78/SYD
  - MDOT Statewide AUP (22A) $ 7.29
  - **48% Savings**
ICRD Recent Project Savings
2014 Intersection Safety Projects
College @ Kipp and Williams @ Decamp

- Vertical and Horizontal Intersection ReAlignment
- Recycled Aggregate Removed and Replaced on New Alignments
  - Aggregate Base, Salv, 7 inch $ 3.28/SYD
  - Std Spec (21AA) Aggregate Base, 7 inch $ 6.44
- 49% Savings
- Minimal to No Imported Aggregate
ICRD Recent Projects
2014 Intersection Safety

Before

College Rd @ Kipp Rd

After
ICRD Recent Projects
2014 Intersection Safety

Williams Rd @ DeCamp Rd

12/26/2014
ICRD Recent Project Savings
2013 Zimmer Road, Williamstown Twp

- 4 mi Widen for Paved Shldr, Crush & Shape;
- Aggregate Base, Salv, 7 inch $ 3.12/SYD
- Std Spec Aggregate Base, 7 inch $ 6.64
- **53% Savings**
- Aggregate Base, Salv, 5 inch $ 2.50/SYD
- Std Spec Aggregate Base, 5 inch $ 4.69
- **47% Savings**
- High Quality Recycled Material Imported from State Complex
ICRD Recent Projects
2013 Zimmer Rd

Zimmer Rd @ M-43 Grand River Ave
ICRD Recent Projects
2013 Zimmer Rd

Before

After

Zimmer Rd
ICRD Recent Project Savings
2013 Cornell Road, Meridian

- 2 mi, 2 Lane Crush & Shape,
- Over 5,000 CYD RAP Imported from Nearby
  Marsh Rd Mill/Fill Project (1/2 mi Long Stockpile!)
- Aggregate Base, RAP, LM $ 8.77/CYD
- Trucking $ 2.50/SYD (From Marsh Rd)
- Total In-Place Cost $ 1.56/SYD
  Placed 5” LM (±4” CIP)
- Crumb Rubber Modified HMA
ICRD Recent Projects
2013 Cornell Rd, Meridian Twp

Before

After

01/01/2007
ICRD Recent Project Savings

2012 Raby Road, Meridian Twp

- ±0.8 mi, 2 Lane Unpaved Local Rd
- Numerous Resident Dust and Pothole Complaints
- 2,500 CYD RAP Imported from Nearby Haslett Rd CIPR Project
- Graded, Compacted by ICRC Maintenance Crew
- Placed ±8” LM (±6.5” CIP)
- Trucking $ 3.00/CYD (From Haslett Rd)
- In-Place Material Cost $ 0.67/SYD
ICRD Recent Project
2012 Raby Road, Meridian

- No More Resident Complaints!
HOT IN PLACE RECYCLING (HIPR)
Hot In-Place Recycling (HIPR)

- HIPR is an On-Site, In-Place Rehabilitation of Existing Pavement Consisting of:
  - Heating (Softening)
  - Rejuvenating (Binder)
  - Mixing
  - Placing
  - Compacting
- Typically 1 to 2 inches in Depth
Hot in Place Recycling (HIPR)

Primary Heater
Hot in Place Recycling (HIPR)

Secondary Heater

Rejuvinating Oil Distributor
Hot in Place Recycling (HIPR)

Screed

Tines & Auger
Hot in Place Recycling (HIPR)

- Immediate Open to Traffic (1-2 Weeks Max)
- Finished HIPR Surface Requires Surface Course
  - HMA Overlay
  - Chip Seal
- $4-6/SYD (Quantity Dependent)

Compacted HIPR Surface
Hot in Place Recycling (HIPR)

HMA Overlay

ICRD 2014 Local Road Program

Curb Reveal
Hot in Place Recycling (HIPR)

- Advantages:
  - Single Pass Operation
  - Lowering/Adjusting Castings Not Required
  - Immediate Open to Traffic

- Disadvantages:
  - Limited Depth
  - Crown Correction Not Possible
  - Reflective Cracking Eventual
  - Not Suitable with Overband/Hot Poured Joint Sealers
ICRD Recent Project Savings
2014 Shoeman Rd, Meridian Twp

- 2.4 mi Cold Milling, HIPR, and Intersection Grade Raise w/HMA Base Crushing
- 2,000 CYD RAP Generated from Cold Milling
- Aggregate Base, Salv, 7 inch $ 4.50/CYD
- Aggregate Base, 21AA, 7 inch $ 10.00/CYD
- 31,000 SYD HIPR @ $ 4.24/SYD
- Maintained Traffic for 8 weeks (NOT Recommended!)
- Surplus RAP Hauled to Unpaved Local Road
ICRD Recent Projects
2014 Shoeman Rd

HIPR Surface

Texture
ICRD Recent Projects
2014 Shoeman Rd
Grade Raise

RAP Surfaced Local Road
COLD IN PLACE RECYCLING (CIPR)
What is Cold-in-Place Recycling (CIPR)?

- In-Place Resurfacing Using Existing Materials with No Heat
- Partial Depth Cold Milling, Bituminous Stabilization Processing, and Repaving in a Single Pass
- Removes Distress at Depths Up to 5 inches
- Requires Wearing Course
  - HMA - Higher Volume Roads
  - Chip, Cape Seal or Micro Surfacing - Lower Volume Roadways
Cold-in-Place Recycling (CIPR)

- Distresses that can be treated with CIR
  - Thermal Cracking
  - Fatigue and Edge Cracking
  - Reflective Cracking
  - Rutting
  - Raveling
  - Poor Ride Quality
Cold-in-Place Recycling (CIPR) Process

- Cold Mill 3 - 5 inches Deep
- Inject Binder/Stabilizing Agent
- Mix All Components
- Re-Pave with Treated Recycled Mixture
- Compact and Cure Recycled Mixture
- Apply Wearing Course
Cold-in-Place Recycling (CIPR)

Types of Stabilization Agents

- Bityminous Stabilization:
  - Conventional Emulsion
  - Engineered Emulsion
  - Foamed Hot AC

- Chemical Stabilization (Pozzolanic), e.g. Cement (Usually an Additive)
Cold-in-Place Recycling (CIPR)

- Types of Stabilization Agents

- Conventional Asphalt Emulsions
  - Mechanical Break
  - Graded for Seal Coat Specifications
  - Temperature and Moisture (Weather) Sensitive
  - Longer Cure Time / Delay Open To Traffic
  - Cost Effective
Cold-in-Place Recycling (CIPP)

- Types of Stabilization Agents

- Engineered Emulsion
  - Higher Asphalt Content
  - Durability
    - Flexible
    - Climate-Specific Binder
    - Formulated for Each Project
    - Faster Cure (vs Conventional Emulsions)
  - Better Dispersion with Higher Film Thickness
Cold-in-Place Recycling (CIPR)

- Types of Stabilization Agents

  - Foamed Asphalt (Expanded Asphalt)
  
  - Water (± 2% by Weight) Injected into PG Grade Hot AC (350° F)
  
  - Water Evaporates Abruptly; Causes Explosive Foaming in the Asphalt Stream
  
  - Asphalt Expands 15 To 20 Times Original Volume
Wirtgen Asphalt Foaming

- Cleaning Plunger
- Hot Asphalt
- Foaming Water
- Foamed Asphalt
- To Other Nozzles
- Expansion Chamber
- Air
Cold-in-Place Recycling (CIPR) - Types of Stabilization Agents

Foamed Asphalt (Expanded Asphalt)

Steam
Surface tension
Cold-in-Place Recycling (CIPR) Process

- Repaving Treated Material
  - Conventional Asphalt Paver (Preferred)
  - Screed w/Electronic Grade & Slope Controls
  - Elevator Loads Paver Hopper
  - Maintain Constant Material Depth
  - 30 Ft Averaging Ski for Smooth Ride
  - Keep Paver Close to Mixing Unit
Cold-in-Place Recycling (CIPR) Process

- Repaving Treated Material
- Some Equipment Has Integral Paving Screed
- Material Handling Capability Limited
- Not Suitable for Crown Correction or Widening Pavement
Cold-in-Place Recycling (CIPR) Equipment

- Types of CIR Trains
  - Single Unit Train
  - Two Unit Train
  - Multi Unit Train
Cold-in-Place Recycling (CIPR) Equipment

- Single Unit Train (Preferred)
  - “Down-Cut” Mill Controls Gradation
  - Mill Cuts Existing Pavement to Proper Depth and Slope with Electronic Controls
- Spray Bar in Cutting Chamber Injects Binder, Water, Additives into Mix with Computer Controlled System
- Treated Material Windrowed Between Processing Unit Tracks
Cold-in-Place Recycling (CIPR)
Single Unit Train
Cold-in-Place Recycling (CIPR) Equipment

- Asphalt Or Emulsion Spray Bar
- Down Cut Milling Head
- Computerized Proportioning System
Cold-in-Place Recycling (CIPR) Equipment

HMA PAYER
Cold-in-Place Recycling (CIPR) Equipment

Two Unit Train
Cold-in-Place Recycling (CIPR) Equipment

Multi-Unit Train
Cold-in-Place Recycling (CIPR) 

**Equipment**

- Compaction
  - CIPR Mixes are Stiffer, Placed in Thicker Lifts; Heavier Rollers Required for Compaction
  - Compaction Follows Emulsion Break (Color Change)
  - Water System Prevents Mix from Sticking to Rollers
  - 95% - 102% Density as Determined by Growth Curve
Cold-in-Place Recycling (CIPR) Equipment

- Breakdown Roller
- Finish Roller
- Intermediate Roller
Cold-in-Place Recycling (CIPR)

Behind Paver

After Compaction

1 Week of Traffic
Cold in Place Recycling (CIPR)

- **Advantages:**
  - Single Pass Operation
  - Short Cure for Open to Traffic
  - Minor Crown Corrections Possible
  - Works Well in Curb Sections

- **Disadvantages:**
  - Lowering/Adjusting Castings Required
  - Partial Depth (Reflective Cracking Eventual)
  - Mat Tender During Cure Time
Ingham County Project
2012 Haslett Road, Meridian Township

2.25 mi 4 Lane Urban C&G Road Resurfacing; 5 inch CIPR Depth, 2 inch 4E HMA Wearing Course

- 55,000 SYD CIPR @ $8.00/SYD
- Profile Milling Along C&G; 2,500 CYD RAP Exported to Raby Rd
- Crumb Rubber Modified HMA
Ingham County Project
2012 Hadlett Road, Meridian
Ingham County Project
2012 Haslett Road
Meridian Township
Ingham County Project
2012 Haslett Road, Meridian
Ingham County Project
2012 Haslett Road, Meridian
FULL DEPTH RECLAMATION (FDR)
What is Full Depth Reclamation (FDR)

- Crushed (& Shaped) HMA Base
- Blend Aggregate Base with Pulverized HMA
- 75 - 80% RAP to Aggregate Ratio Preferred
- Add Aggregate to Improve Structure Number (SN)
- Regrade Base
- Base Stabilization (4 to 8 inches) Improves Aggregate SN:
  - Bituminous Stabilization
  - Chemical Stabilization
Types of (FDR) Stabilization (Binders)

- Bituminous Base Stabilization:
  - Engineered or Conventional Emulsion
  - Hot Liquid AC
  - Foamed Hot AC

- Chemical Stabilization (Pozzolanic)
  - Cement
  - Lime
  - Type C Fly Ash
  - Kiln Dust
Full Depth Reclamation (FDR)
Full Depth Reclamation (FDR)

Equipment/Processing Variations:
- Single Pass Equipment (Same as CIPR)
  - Paver Placed
- Multiple Pass Equipment
  - Single or Multi-Drum Stabilizer
  - Stabilized in Place
  - Graded and Compacted
- Requires Wearing Course (HMA, Chip Seal)
Same Equipment as CIPR
No Grading
Separate Paver Can Be Used
Multi-Pass FDR Equipment

Multi-Drum Unit (Requires PreCrushing)

Single Drum Unit (PreCrushing Optional)
Multi-Pass, Multi Drum FDR Process

PreCrushing
This Method Provides More Uniform Stabilization Depth Where Crown Correction is Required

Grading/Balancing
Multi-Pass FDR Evt/Process

Compaction

Spray Bar - Multi Drum
Multi-Pass FDR Process

Completed Grade

Grading Stabilized Base
Completed FDR
Stabilized Base
Texture
Overlay
Full Depth Reclamation (FDR)

- Pavement Deficiency/Distress Corrected with FDR
  - Frequent Deep Transverse and/or Lateral Cracking
  - Heavy Map/D Cracking
  - Reflective Cracking
  - Heavily Patched/Potholed
  - Severe Rutting or Shoving
  - Parabolic Crown
  - Insufficient base strength
Suitable FDR Candidates
Full Depth Reclamation (FDR)

FDR Advantages

- Cost Effective Compared to Reconstruction
  $5-7/SYD Depending on Depth, AC Content
- Reduced Trucking
- Reduced Construction Time (Short Cure)
- Allows for Cross Section/Crown Corrections
- Added Pavement Structure
  - Add RAP or Aggregate
  - Stabilized Base 2.5 x SN Untreated Aggregate
- Minimal Grade Raise
- Reflective Cracking eliminated
Full Depth Reclamation (FDR)

- FDR Disadvantages
  - Must Lower Structures, Survey Monuments
  - Traffic Disruption > CIPR (Aggregate Surface)
  - Minimal Grade Raise
  - Moisture Sensitive
  - Must Correct Drainage Problems
Not a Good Candidate
ICRD Recent Projects
2009 Williamston Rd.

3” HMA, 13A Surface over
6” Engineered Emulsion Stabilized FDR
ICRD Recent Projects

2010 Mt. Hope Rd, Meridian

300 lb/syd HMA LVSP, 6.5” AC FDR
GROUND TIRE (CRUMB) RUBBER MODIFIED HMA PAVEMENTS IN INGHAM COUNTY
Crumb Rubber (CR) Modified HMA

- Proven Technologies in U.S.A.

- Terminal Blend - CR & Polymer Blend Mixed at Asphalt Terminal

- Wet Process - CR Mixed at HMA Plant with Specialized Equipment

- Dry Process - CR Blended with RAP Stockpile at HMA Plant

- NOTE: CR Granules Soften, But Do Not Melt in AC Binder or HMA Mixture
CRUMB RUBBER (CR) MODIFIED HMA - EMERGING TECHNOLOGIES

- Pre-Swollen - CR Pretreated/Soaked in Liquid Asphalt Absorbs AC and Expands; Blended with HMA Mixture with RAP Stockpile

- Devulcanized - Emerging Technology to Process CR into Liquid Introduced to AC at HMA Plant, Akin to Liquid Polymer (Rubber Melts)
ICRD Partners with Michigan State University to Research/Develop CR Modified Mixtures Suitable for Michigan Climate

<table>
<thead>
<tr>
<th>YEAR</th>
<th>PROJECT</th>
<th>TYPE</th>
<th>GRANT AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>WAVERLY RD</td>
<td>TERMINAL BLEND</td>
<td>$287,400.00</td>
</tr>
<tr>
<td>2012</td>
<td>HASLETTE RD</td>
<td>WET PROCESS</td>
<td>$151,100.00</td>
</tr>
<tr>
<td>2013</td>
<td>CORNELL RD</td>
<td>TB/DRY HYBRID</td>
<td>$192,000.00</td>
</tr>
<tr>
<td>2014</td>
<td>BENNETT RD</td>
<td>TB/HIGH RAP</td>
<td>$178,200.00</td>
</tr>
<tr>
<td>2014</td>
<td>KINAWA RD</td>
<td>TB/HIGH RAP</td>
<td>$189,900.00</td>
</tr>
<tr>
<td>2014</td>
<td>HAGADORN RD</td>
<td>TB/HIGH RAP</td>
<td>$38,500.00</td>
</tr>
<tr>
<td>2015</td>
<td>LAKE LANSING RD</td>
<td>PRE-SWOLLEN</td>
<td>$300,000.00</td>
</tr>
<tr>
<td>2016</td>
<td>?OKEMOS/JOLLY RDS</td>
<td>DEVULCANIZED</td>
<td>$300,000.00</td>
</tr>
</tbody>
</table>

Total MDEQ Grant Funding $1,637,100.00
2013 Cornell Road
Meridian Twp

CR MIX / CONTROL MIX
HYBRID DRY/TERMINAL BLEND
2014 Bennett Road, Meridian Twp

- 1.5 mi 2 Lane w/ Paved Shoulders; Full Depth Cold Milling, Aggregate Base Conditioning, Intersection Widening, and Repaving

- 2,700 CYD RAP Delivered to 2 Locations

- High RAP Content Crumb Rubber Modified HMA
2014 Bennett Road
Meridian Twp

Control Mix / CR Mix

CR Mix / Control Mix
2014 Kinawa Road, Meridian Twp

- 0.05 mi 3 Lane Curb & Gutter;
- 21,000 SYD Cold Milling
- 1,500 CYD RAP Delivered to Unpaved Local Road
- 22,000 SYD HIPR @ $ 4.02/SYD
- +1,100 CYD Subgrade Undercutting, Type I (RAP Backfill)
- High RAP Content Crumb Rubber Modified HMA
2014 Kinawa Road
Meridian Twp

CR Mix / Control Mix
SUMMARY

Ingham County Has Realized Significant Cost Savings and Extended Project Budgets with the Successful, Aggressive Use of Multiple Recycling Methods, Combined and Coordinated among Multiple Concurrent Projects
Acknowledgements

Jim Schwarz - JZS Consulting LLC
Tim Flanagan - Flanagan Sales & Assoc., Inc
Asphalt Recycling and Reclaiming Association (ARRA) www.AARRA.org
OPTIMIZING PAVEMENT RECYCLING METHODS IN INGHAM

QUESTIONS?