

GRS-IBS In Midland

6 years of Lessons Learned

Craig Schripsema, PE Terry Palmer, PE

SO....WHERE ARE WE AT?

How many in audience have worked on a GRS-IBS bridge in Michigan?

 How many have even considered this technology as an option?

By end of 2019 – 26 built????

3 more in 2020?

Last report I could find from 2018 estimated over 200 bridges nationally!

It is estimated that over ³/₄ of bridges needing replacement could consider GRS-IBS!

From: Chris Johnecheck, PE, 2015 Bridge Conference Presentation

IT IS ALL ABOUT MORE FOR LESS

- \$\$\$ Estimated \$350K saved per bridge adds up to \$9,000,000 for 26 bridges in 5 years!!!
- Time "Every Day Counts!" average time saved is 3 weeks per bridge – adds up to 78 weeks of construction time!!
- Flexibility Easily modified to fit individual sites, natural bottom, avoid utility conflicts, single spans from 20 to 140 ft. (starting to see multi-span...)
- Constructability 9 of the bridges have been built by the 3 different county forces, with 2 more planned for 2020. Additional average savings of \$200,000 each...that is another \$1,800,000 saved!

SO... WHAT IS HOLDING US BACK?

- Fear of new technology?
- Concern about Scour?
- Types of Facing Materials?
- Lack of Contractors?
- Longevity?

CONSIDERATIONS - Technology

- Part of FHWA's Everyday Counts Initiative since 2010 – first one built in 2005
- New FHWA Spreadsheet that follows LRFD methodology
- Not new any more...

CONSIDERATIONS - Scour

- Locating the RSF
 - Typically place top at estimated scour
 - New FHWA TechBrief (12/18) – Changes this

- Counter Measures riprap, sheet piling, depth of RSF, ???
- Monitoring

CONSIDERATIONS – Flood Events

- MDOT has updated Special Provision that limits the use of precast block units to:
 - Modular Block Unit
 - Redi-Rock
 - Recon Retaining Wall Systems
 - Segmental Block Unit -
 - Allan Block
 - Keystone Retaining Wall System

Very different types of block...

CONSIDERATIONS - Contractors

- At least 6 different "Bridge" contractors
- Local Bid and MDOT/LAP Bid
- At least 3 different Road Commissions have self built

CONSIDERATIONS - Longevity

- Geosynthetics have 100-year design life
- Facing is cosmetic
- No bridge bump, reduced impact
- Oldest structure built in 2005
- Technique dates to the Great Wall of China...

CONSIDERATIONS – Superstructure

OHM Advisors[®]

ELEMENTS - Beam Bearing

ELEMENTS - RSF

CONSIDERATIONS - Soils

- Existing "Bearing Soils"
 - Stiff Clays/Silts
 - Compact Granular
 - Loose Granular
- Backfill Materials
 - Granular Free Draining
 - Aggregate
 - Native

12

WHAT IS THE FUTURE?

Figure 3. Construction of U.S. 301 Trail Bridge with multi-span GRS-IBS in Zephyrhills, Florida.

ACM Freeway Loop - Willow Run

Figure 4. Completed two-span GRS-IBS bridge in Knox County Beach, Maine.