Online Design Tools: eSPAN140 Demonstration & Design Example
Steel Bridge Economy & Case Studies

Michigan Bridge Conference: Tuesday, March 20 (Ann Arbor, MI)

Gregory K. Michaelson, Ph.D.
Marshall University
michaelson@marshall.edu
The Short Span Steel Bridge Alliance

- Program officially started September 2007
 - Objective – make steel the material of choice for short span steel bridges.
 - Short span steel bridges have spans up to 140 ft
 - First North American industry-wide effort to provide education and design support for short span steel bridges.
SSSBA Website

- eSPAN140 Web-based Design Tool
- Bridge Technology Center
- Technical Design Resources
- Project Case Studies
- News Updates & Social Media (Twitter / LinkedIn / Facebook)
- Email Newsletter (sign-up to receive it)

Join Today!

Rich Tavoletti (SSSBA Director)
rtavoletti@steel.org
(412) 458-5822

http://www.shortspansteelbridges.org/
The Problem...

- Bridge engineers are well trained on the use of short span concrete bridges.
 - In fact, over than 80% of the short span bridges in the United States are made of concrete.

- Many County and (DOT) engineers are simply not educated/familiar with the design, construction, and economics of short span steel bridges.
 - Concrete provides simple, standardized, cost-effective, “tinker toy” solutions to construct short span steel bridges.
 - Steel bridges are “perceived to be too” complex, “Swiss watch”-like, and too expensive.
Case Study Bridges: Audrain County, MO

- Project Location:
Case Study Bridges: Audrain County, MO (cont’d)

- **MO Bridge 411**
 - Built 2012
 - 4 Steel Girders
 - 47.5 ft Span
 - 24 ft Roadway Width
 - 2 ft Structural Depth + Slab

- **MO Bridge 336**
 - Built 2012
 - 6 Precast Hollowcore Slabs
 - 50.5 ft Span
 - 24 ft Roadway Width
 - 2 ft Structural Depth + Slab
Case Study Bridges: Audrain County, MO (cont’d)

- **Steel:**
 - Total Bridge Costs:
 - Material = $41,764
 - Labor = $24,125
 - Equipment = $21,521
 - Guardrail = $7,895
 - Rock = $8,302
 - Engineering = $8,246
 - TOTAL = $111,853 ($97.48/ft²)

- **Concrete:**
 - Total Bridge Costs:
 - Material = $67,450
 - Labor = $26,110
 - Equipment = $24,966
 - Guardrail = $6,603
 - Rock = $7,571
 - Engineering = $21,335
 - TOTAL = $154,035

 19.3% Total Cost Savings w/ Steel
Case Study Bridges: Audrain County, MO (cont’d)

- Steel:
 - Total Cost per ft²:
 - Total Cost = $97.48/ft²
 - Construction = $90.29/ft²
 - No Engineering
 - Adjusted = $83.05/ft²
 - No Engineering or Rock

- Concrete:
 - Total Cost per ft²:
 - Total Cost = $120.83/ft²
 - Construction = $104.08/ft²
 - No Engineering
 - Adjusted = $98.14/ft²
 - No Engineering or Rock
Case Study Bridges: Audrain County, MO (cont’d)

- **Steel:**
 - **Superstructure Only:**
 - Start to finish = 10 days
 - Girders = $21,463
 - Deck Panels = $7999
 - Reinf. Steel = $3135
 - Concrete = $4180
 - Labor = $5522
 - Equipment* = $500
 - **TOTAL =** $42,799

 Material Considerations:
 - Added cost to use galvanized steel \approx $0.22/\text{lb}$ (includes est. 10% fabrication fee)
 - Added cost to use weathering steel \approx $0.04/\text{lb}$ (already included in cost in example)

 Equipment Considerations:
 - County crane (30-ton) used for steel; Larger rented crane required for concrete
 - Equivalent county crane cost is $1520 (would result in steel cost of $38.88/\text{ft}^2$)

- **Concrete:**
 - **Superstructure Only:**
 - Start to finish = 13 days
 - Slab Girders = $50,765
 - Deck Panels = $0
 - Reinf. Steel = $724
 - Concrete = $965
 - Labor = $4884
 - Equipment* = $4000
 - **TOTAL =** $61,338

 =$50.61/\text{ft}^2$
Case Study Bridges: Audrain County, MO (cont’d)

- **Steel:**
 - Superstructure total cost of $37.54 per ft2

- **Concrete:**
 - Superstructure total cost of $50.61 per ft2

Same bridge conditions:
- Structural Depth = 2 ft + Slab (No Difference in Approaches)
- Roadway Width = 24 ft
- Same Abutments for Both Can be Used (Steel Could Use Lighter)
- Same Guard Rail System
- Same Work Crew
Advantages of MO Bridge 411

- Lighter cranes required:
 - Owner cranes can save costs.
Advantages of MO Bridge 411 (cont’d)

- Lighter abutments possible for steel bridges.
Advantages of MO Bridge 411 (cont’d)

- Cast-in-place deck on prestressed concrete deck panels
Advantages of MO Bridge 411 (cont’d)

- Simple and practical details:
Advantages of MO Bridge 411 (cont’d)

- Elastomeric bearings and integral abutments:
Advantages of MO Bridge 411 (cont’d)

- Use of weathering steel:
Case Study Bridges: Additional Bridges in MO

<table>
<thead>
<tr>
<th>Superstructure</th>
<th>Steel</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Number</td>
<td>061 140 149 152 710</td>
<td>AVG 028 057 069 520 AVG</td>
</tr>
<tr>
<td>Span Length</td>
<td>50 50 40 62 64</td>
<td>53.2 36 36 38 40</td>
</tr>
<tr>
<td>Skew</td>
<td>0 0 0 30 35</td>
<td>13 0 15 20 30</td>
</tr>
<tr>
<td>Cost Summary</td>
<td>- Labor $14,568 $21,705 $15,853 $24,765 $31,949</td>
<td>$21,768 $12,065 $15,379 $14,674 $19,044</td>
</tr>
<tr>
<td></td>
<td>- Material $56,676 $53,593 $46,28$2 $92,821 $69,357</td>
<td>$63,746 $51,589 $54,450 $50,576 $46,850</td>
</tr>
<tr>
<td></td>
<td>- Rock $6,170 $6,216 $3,694 $8,235 $6,501</td>
<td>$6,163 $5,135 $7,549 $5,378 $3,621</td>
</tr>
<tr>
<td></td>
<td>- Equipment $7,487 $12,026 $7,017 $19,579 $15,266</td>
<td>$12,275 $5,568 $10,952 $11,093 $14,742</td>
</tr>
<tr>
<td></td>
<td>- Guardrail $4,715 $7,146 $3,961 $7,003 $7,003</td>
<td>$5,966 $4,737 $4,663 $5,356 $3,323</td>
</tr>
<tr>
<td>Construction Cost</td>
<td>$89,616 $100,686 $76,807 $152,403 $130,076</td>
<td>$109,918 $79,094 $92,993 $87,077 $87,580</td>
</tr>
<tr>
<td>CONST. COST PER FT²</td>
<td>$74.68 $83.91 $80.01 $102.42 $84.68</td>
<td>$86.09 $91.54 $107.63 $95.48 $91.23</td>
</tr>
</tbody>
</table>
The Solution

- **Standardized designs for short span steel bridges**
 - BTC led a 3-year industry-wide effort (owners, fabricators, designers, associations, service centers, etc. involved)
 - Over 3,000 designs evaluated
 - Result = simple standardized designs for short span bridges
 - Rolled beam, plate, & buried soil steel structures
 - Standards used to develop eSPAN140
 - 650 total preliminary bridges designed
 - Adding abutments, substructure, CSP enhancements, metric, and Canadian designs in next 12 months.
 - BTC working with Mexico & Canada to develop MEX/CAN version
 - BTC working with AASHTO for designs to become a national guideline
http://www.espan140.com/
Free Online Design Tool for Short Span Steel Bridges
Utilizes Standard Short Span Steel Bridge Designs

SHORT SPAN STEEL BRIDGE DESIGN STANDARDS
Standards for Short Span Steel Bridge Designs

• Goals:
 – Economically competitive
 – Expedite & economize the design process
 – Simple repetitive details & member sizes.

• Bridge Design Parameters:
 – Span lengths: 40 feet to 140 feet (5-foot increments)
 – Girder spacing: 6 feet, 7.5 feet, 9 feet and 10.5 feet
 – For each of these increments, the following were designed:
 • Steel girders
 • Shear stud & stiffener layouts
 • Welding and fabrication details
 • Elastomeric bearings
 • Concrete deck design

Primary value is use as an estimating tool!

• Now have the ability to produce a valid steel bridge design in minutes
• Obtain a cost estimate from a fabricator within a day
• Can directly compete with concrete alternate
• Design can then be further optimized
Standard Short Span Steel Bridge Designs (cont’d)

- Four types of girder types:
 - Homogeneous plate girders (50 ksi steel)
 - Hybrid plate girders
 - 50 ksi top flanges and webs, 70 ksi bottom flanges
 - Lightest weight rolled beams (50 ksi steel)
 - Utilizing the lightest weight girder necessary
 - Limited depth rolled beams (50 ksi steel)
 - Designed to meet a target L/D of 25

- In addition, girders were designed to accommodate commonly stockpiled plate thicknesses and rolled beam sizes.
Standard Short Span Steel Bridge Designs (cont’d)

- Bridges were designed according to AASHTO LRFD Specs:
 - Strength I, Service II, Fatigue, Constructability, L/800 Deflection
 - HL-93 Vehicular Live Loading
- Additional Design Loads:
 - SIP unit weight: 15 psf
 - FWS: 25 psf
 - Concrete barriers = 520 lb/ft
 - Misc. steel wt. increase = 5%
 - Concrete unit weight = 150 pcf
 - Steel unit weight = 490 pcf
 - Concrete haunch = 2 in
 - Constant flange width
 - Constant web height
Standard Short Span Steel Bridge Designs (cont’d)

• Weight comparisons (9’-0” girder spacing):

![Graph showing weight comparisons for different bridge designs]
One-stop shop for customized steel bridge and culvert solutions!

- eSPAN140 provides:
 - Standard designs and details for short span steel crossings
 - Rolled Beam and Plate Girders
 - Corrugated Steel Pipe and Structural Plate
 - Manufacturers' Steel Solutions (SSSBA Partners)
 - Coatings Solutions
 - Industry Contacts
 - Contacts can provide budget estimates and pricing information

Free and easy to use!!!
http://www.espan140.com/
eSPAN140 Example

- Start new project:

My Projects

Welcome to eSPAN140. If this is your first time here, please click on “Start New Project” to begin.

If you have already created a project, please use the table below to view past projects, complete partially existing inputs you provided, please click on “Duplicate”. This will allow you to create a new project (I have multiple bridges to design and have only a few input values to change).

Start New Project
eSPAN140 Example (cont’d)

- Step 1: Project Information

Project Name*
Sample Bridge

City/County*
Morgantown

State/Province* 📚
West Virginia

Roadway Name
Main Street

Bridge Span Length*
82 Feet 4 Inches

Next > Return to Projects
eSPAN140 Example (cont’d)

- Step 2: Project Details (general dimensions)
eSPAN140 Example (cont’d)

- Step 2: Project Details (pedestrian access option)
eSPAN140 Example (cont’d)

- Step 2: Project Details (remaining details)
eSPAN140 Example (cont’d)

- Example output (sample plate girder elevation):

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8’ 10” GIRDER SPACING, HOMOGENEOUS

![Diagram of composite plate girder with partially stiffened web]

Table: Plate Girder Size

<table>
<thead>
<tr>
<th>Span (L) - ft</th>
<th>Top Flange (F)</th>
<th>Bottom Flange (G)</th>
<th>Web Plate (in)</th>
<th>Diaphragm (C) - ft</th>
<th>Shear Stiffeners</th>
<th>Shear Connector Max. Spacing</th>
<th>Individual Girder Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>14 x 3/4”</td>
<td>14 x 1”</td>
<td>17”</td>
<td>14 x 2”</td>
<td>61”</td>
<td>32 x 1/2”</td>
<td>21.25”</td>
</tr>
</tbody>
</table>
eSPAN140 Example (cont’d)

- Example output (typical fabrication details):
eSPAN140 Example (cont’d)

- Example output (typical fabrication details, cont’d):

```
- CONNECTION STIFFENER
- LEVEL OR SLOPING
- NOTE 1
- EQUAL
- MEMBER (SEE TABLE 1 THIS SHEET)
- CUT FLGS. FLUSH FOR W SECTION
- 3"

SEE STANDARD CLIPS & WELD TERMINATION DETAIL

TIGHT FIT

OPTION 1, OPTION 2

SHEAR STIFFENER (N.T.S.)

CONNECTION STIFFENER (N.T.S.)

E ½" x 5"
```
Design Example (cont’d)

- Typical section & deck details:
Design Example (cont’d)

- Typical bearing details:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>INTERNAL ELASTOMER LAYERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16”</td>
<td>18”</td>
<td>4.375”</td>
<td>12”</td>
<td>5</td>
</tr>
</tbody>
</table>

BEARING ELEVATION
OPTION "A" (N.T.S.)

SEATED JOINT WI APPROVED SEALER (BOTH SIDES)

ABUTMENT STEM

ELASTOMERIC BEARING
EXISTING BEARING SEAT (IN GOOD CONDITION)
Design Example (cont’d)

- CSP & Structural Plate Standards:
Design Example (cont’d)

- Manufacturer’s Solutions:
Design Example (cont’d)

- Durability Solutions:
 - Weathering steel
 - Galvanized steel
 - Painted steel
Applications of eSPAN140

- **Jesup South Bridge, Buchanan County, Iowa** – 1st Direct Application
 - Buchanan County Iowa – **Constructed with County Crew**
 - Replacement using W36x135 rolled beams
 - 65 feet length, 40 width
 - Over $100,000 donations from members
 - Better Roads (February 2014)
Ohio Short Span Steel Bridge Design Standards

- In light of the success of eSPAN140, the Bridge Technology Center has been engaged in efforts to generate eSPAN140-based standards approved in a given state.

 - Recent efforts have been focused on in the State of Ohio.

- The Short Span Steel Bridge Alliance has begun the development of Ohio-specific short span steel bridge design standards.

 - We are eager to assist other agencies in the development of owner-specific short-span steel bridge standards!
Bridge Technology Center

- Free resource available to bridge owners and designers with questions related to:
 - Standard design and details of short span bridges (plate & rolled beam)
 - Standard design and details of corrugated steel pipe and structural plate.
Bridge Technology Center (cont’d)

- Training & Education Available!
 - Topics
 - Bridge Engineering-101
 - Steel bridge economy & cost-effective design
 - Standard designs (rolled beam, plate, CSP, structural plate)
 - Case studies/cost analysis
 - Format
 - Half-day workshops (county engineers/LTAPs)
 - Webinars (online training / presentations)
 - Steel Bridge Forums (DOTs)
 - Conferences/Trade show presentations
 - Technical Design Support (Bridge Technology Center)
 - SSSBA Website (Solutions Center, videos, etc.)

Rich Tavoletti
Steel Market Development Institute
rtavoletti@steel.org

Website:
http://www.shortspansteelfebridge.org

Short Span Steel Bridge Alliance – SSSBA
@ShortSpanSteel
Questions?

Thank You!